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INTRODUCTION

I. INTRODUCTION

Prior to the 1960's, most of the work on celestial sensing devices involved
the study and development of star tracking systems using photomultipliers. The
possibilities of celestial sensing without closed loop tracking were not ex-
tensively considered. Probably the significant exception to this was the work
which was done with image tubes in which the gimballed optical system was
approximately pointed at the target and the final measurement was made by the
image tube.

Since image tubes do not provide an accuracy better than about 1/1000 of
the field of view, it was necessary to use fields of view which were not
greater than 3.6 degrees to achieve an accuracy of ten seconds of arc. It
was for this reason that crude pointing was necessary even though the final
determination of star position was made on an open loop basis in which only
position sensing was required.

Subsequently, a number of investigators who were interested in the general
problem of attitude determination in space considered using image tubes with
wide angle optical systems. With this type of system, a sufficient number of
bright stars could be detected to achieve automatic pattern recognition for a
random orientation. A system of this type was suggested by Rosenfeld (1960).
Employing a field of view of about ten degrees, he achieved an accuracy of a
few minutes of arc and detected stars down to the sixth magnitude. Another
system described by Potter (1960) employed a field of view of 30 degrees,
achieved an accuracy of approximately seven minutes of arc, and detected stars

down to the third magnitude. Both of these systems had the decided advantage
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INTRODUCTION

of requiring no closed loop tracking, but were somewhat lacking in either
accuracy or in requiring the detection of very faint stars.

More recently efforts have been made to develop_mosaic or grid type
celestial sensors, which would avoid the need for an image tube, and which
employ no moving parts. Systems of this type have not provided adequate
resolution to be competitive with star trackers while providing a sufficiently
large field of view. An interesting system described by Lally (1961) uses a
mosaic of solid-state detectors. The accuracy expected from a ten by ten
detector of this type is seven seconds of arc with a scanning resolution of
1/50 of each detector and optics providing a one degree field of view. A
related grid-type system is the electroluminescent panel, Harmon (1962),
in which a solid-state cross grid of wires produces a light source which is
projected onto a beam coincidence detector. When the star image and the beam
from the panel coincide, the conductance of the detector increases sharply.
Another mosaic-type system has been described by Viglione and Wolf (1962),
in which 400 photovoltaic cells were considered. With a field of view of
25 degrees, a limiting magnitude of 4.5, and two sight lines orthogonal to
one another and to a line to the sun, an accuracy of 0.2 degree was predicted.

A partial solution to the problem of achieving a high resolution has
been achieved by a novel device described by Snowman (1962) in which a highly
accurate attitude measurement (30 arc seconds) was achieved for all three axes
with a 46 degree field of view. 1In this case, various reference star fields
were mechanically fabricated and mounted at the focal plane of the optical

system. This device requires, however, that it be pointed within ten degrees



INTRODUCTION

of the center of the reference field, and the problem of randomly pointing the
sensor in any direction relative to the celestial sphere was not solved.

A study of the various system trade-offs led Lillestrand and Carroll (1961)
to conclude that wide field of view systems offer considerable pfomise, if the
problem of achieving a sufficiently high resolution can be solved. By employing
a narrow optical slit to scan the star field, the position of the star images
can be found to an accuracy of at least 1/10,000 of the field of view of the
optical system. This means that optical systems with a 30 degree field of
view can provide an accuracy of ten seconds of arc, as described by Harrington
(1963). 1In the case of spinning spacecraft, systems of this type can be fab-
ricated with no moving parts, as described by Kenimer and Walsh (1964). 1In
the case of inertially stabilized spacecraft, provision must be made for
rotating the slit.

The use of a narrow slit mounted at the focal surface permits the accuracy
of the attitude measurement to approach the optical resolution. Resolutions
better than one part in 1O4 can be achieved, whereas other techniques of atti-
tude measurement seem to be limited at about one part in 103. Furthermore,
using the techniques described in Section VI, it is possible to interpolate
the star image and to determine its position with more accuracy than the
angular width of the blur circle.

A recent program at Control Data has involved the fabrication and test of
a celestial sensing system. The system can bé randomly pointed at the sky,
recognize the pattern of stars, and then solve the three axis attitude deter-

mination problem. They system is composed of a wide angle celestial reference,
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INTRODUCTION

(WACR) and a digital computer. The program was sponsored by Air Force Avionic:
Laboratory, Wright-Patterson Air Force Base, (Contract No. AF 33(615)-1428).
One of the sensor design objectives was the measurement of pointing direction
relative to the celestial sphere to an accuracy of one minute of arc.

Using an optical system which has a two inch aperture and scan periods
ranging from roughly 1.0 to 10 seconds, rms pointing errors of less than 30
seconds of arc were achieved using actual stars. The basis for these tests
was a comparison of the known location of the observatory and the location
measurements provided by an accurately leveled sensor, which was pointed
directly overhead.

Since atmospheric scintillation degraded the quality of the outdoor
measurements, a parallel series of tests were made using artificial stars
with the result that pointing accuracies of the order of ten seconds of arc
were achieved. When multiple scans were averaged the pointing accuracy
increased roughly in proportion to the square root of the number of scans.
Because of extraneous sources of error in the test set-up, this process of
statistical refinement could not be continued below two seconds of arc,

In addition to the accuracy objective, a second major program objective
was that of on-line pattern recognition. The first system design, WACR-I,
was not able to reliably achieve this objective because of the dependence
of the pattern recognition process on the measurement of star intensities.
During this phase of the work, in addition to problems presented by large
background radiation from city lights, it was found that scintillation caused

rms intensity variations of twenty to fifty percent from scan to scan.
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As a result of these problems an improved pattern recognition technique
was then developed and the original sensor design was modified. The modified
system (WACR-II) did not require the measurement of star intensity, and pattern
recognition was done on the basis of geometry only. This system was extremely
successful and it was found that pattern recognition could be unambiguously
achieved when background radiation from city lights was sufficiently small to
permit the detection of three or more stars. This technique of pattern recog-
nition is completely general in that no assumption whatsoever regarding sensor
orientation need be made.

To be really useful the pattern recognition process must be capable of
giving correct three axis attitude determination in the presence of various
sources of noise--as well as in the presence of nonstellar targets which fall
within the field of view. This capability exists in the present system. For
example, pattern recognition has been achieved with nine signal pulses (three
stars with three pulses per star) and 50 noise pulses. At a later stage of the
pattern recognition process, angular separation matching permits the system
to discriminate against nonstellar targets. At various times during the roof-
top measurement program, airplanes, earth satellites, and planetary targets have
have been detected and have been separated from the data generated by stellar

targets.
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A, Basic System Parameters

In developing a three axis attitude sensor, a problem which immediately
presents itself is the selection of the optimum field of view, which determines
the magnitude of the dimmest star we must detect. 1In the following discussion
we assume the sensor is to have the capability of determining its attitude
when pointed in a random direction. The factors affecting the selection of
the field of view are illustrated by Figure 1. For purposes of simplification
we assume that the stars are uniformly distributed on the celestial sphere
and that an average of three stars are required within the field of view of
the optical system. For example, if the optical system has a ten degree field
of view, one must be able to detect about 1500 stars in order to have an
average of three stars in the field of view. This means that the system must
be able to detect stars down to about 5.5 visual magnitude. 1If, in this
example, we assume that each axis of the three axis attitude sensor must be
accurate to ten seconds of arc, then a resolution of one part in 3600 is re-
quired in the determination of the position of the stars within the field of
view. If a computer memory is to be used to store star position and bright-
ness data, allowing 36 bits for position and 6 bits for brightness, then
63,000 bits of memory are required. Table 1 summarizes the design problems
resulting from the decision to use either a small, an intermediate, or a large
field of view optical system. The factors shown on this table lead one to
conclude that three axis attitude sensors for space navigation and guidance
should employ fields of view in the range: 40° < Fov < 60°.

From an operational point of view the design will depend on the dominant
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TABLE 1

Field of View Comparison

Size of FOV

Disadvantages

Small (Fov < 10°)

Large computer memory is a
requirement,

Star pattern recognition is
difficult because of large
number of stars.

Detection of faint celestial
targets requires large
diameter optics.

Only two out of three axes
are accurately defined.

Intermediate (30° < FOV < 60°)

Detection electronics must
be capable of measureing
positions of stars within
field of view with high
resolution.

Design of high resolution
camera requires more complex
lens train.

Large FOV requires more care-
fully designed shield to
minimize detrimental effects
of sun and nearby planets.

Large (FOV > 90°)

High resolution, small f
number systems are very
difficult--if not impossible--
to design optically.

With reasonable apertures,
size of optical elements be-
comes very large.

Difficult to find pointing
direction not containing
bright or extended objects
such as sun, earth, and moon.
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INTRODUCTION

stabilization mode of the spacecraft. Three modes might logically be
considered: (1) spinning spacecraft, (2) inertially stabilized spacecraft, and
(3) a spacecraft stabilized relative to local vertical. 1In Figure 2 these
various cases are considered. The major differentiating factor concerns the
scan field itself; two cases are shown--a strip scan and a conical scan.
Various focal plane slit arrangements have been used and this figure schemati-
cally shows the projection of these slits outside the three axis attitude
sensor in the direction of pointing. In some of the cases shown, the motion

of the spacecraft itself suffices to provide the scan and no moving parts are
necessary; in others, a scan must be provided by rotating the slit itself or

by rotating the entire sensor.
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B. Information Limits of Scanning Optical Systems

In view of the potential usefulness of scanning optical systems for
celestial attitude determination, a theoretical investigation of the

information limits of scanning optical systems was initiated by NASA Langley

Research Center at Control Data. This report presents our analysis and results.
The investigation had two basic objectives,

(1) to improve the accuracy of current methods of predicting system
performance, and

(2) to develop better techniques of signal processing.
The first objective was met by developing complete models for the radiation,
optical image, and photodetector. The second objective was met by carefully
investigating various operating situations and selecting the most "efficient"
processing technique for each situation. To optimize the sensor design a
computer program was developed that automates the design. Also
techniques for multiple observations were investigated.

In Figure 3, various sections of this report are related to the basic
elements of the sensor. 1In Section II we discuss the effect of image shape,
photoemission statistics, and stellar spectrum on the signal generated by the
photodetector. Section IIT contains several statistical models of the back-
ground radiation which predict the number of weak star detections. The amount
of information that can be extracted from the two-dimensional photoelectric
image of a star is limited by the background radiation, optical aberrations,
quantum efficiency, etc. The intrinsic limitations are developed in
Section IV. In Section V, the characteristics of various photodetectors are

discussed in relation to the requirements of scanning optical systems. To
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efficiently use the detected signal, we must carefully describe the operating
situation and select the optimum signal processing technique., This approach

was developed in Section VI. Multiple observation techniques are considered

in Section VII.

In designing a scanning optical system we must manipulate several system
parameters that are interdependent. The system design has been automated with
a computer program, Section VIII. The program facilitates the design analysis.
Several alternative designs can be developed in a relatively short time.

This report was prepared so that each section is essentially self-contained.

An extensive bibliography is included as Section XI.

I-15



STAR RADIATION

II. STAR RADIATION

The design of a scanning optical system depends upon the objects being
viewed, how the optical system will distort the information being received
from the objects in the field of view and how the system transforms this
information into a usable electronic signal.

Subsection A discusses the effect that image shape has on the output of
a passing slit. All the results are compared to scanning a two-dimensional
Gaussian intensity distribution.

Many types of scanning systems already existing use a moving-spot. For
example, image orthicons, deflectable photomultipliers and photographic plate
scanners. Subsection B shows that the results for a moving slit can be a
applied directly to a moving-spot scanner.

In Subsection C we discuss the statistical distribution of photon
arrivals and photoelectric emissions. The emission distribution is Poisson
for most cases of interest.

The amount of energy received from a light source and its interactiom
with an electro-optical system is greatly dependent upon the spectral energy
distribution of the light source and the wavelength dependent response of the
electro-optical system. Subsection D discusses the interaction between

specific photoemissive surfaces and starlight.
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STAR RADIATION

A. Intensity Distribution Patterns

Imperfections in the optical system result in a distortion of the star
image. Common lens aberrations and distortions result in an image which is
symmetric about a line from the center of the field of view.

Consider the situation in which a point source image crosses a radial
slit. We will compare the relative energy transmitted by the slit for dif-
ferent intensity distributions, such as a two-dimensional Gaussian, uniform
triangle, uniform rhombus, uniform ellipse, and a Fraunhofer diffraction
pattern.

If I(x, y) describes the intensity distribution on the focal plane, then

we will compute

tf-TE %
X
I(X,\x) A%AX
e~§- o
Gt) = — 2
I(X)“s\ A\%AX

where TS is the time it takes a point image to cross the slit and t = 0 when
maximum energy is being transmitted by the slit. The volume enclosed by the
grid lines in Figure 1 is proportional to G(t).

In order to make our results comparable, set G(0) = 0.8; i.e., eighty
percent of the energy is transmitted at the point of maximum energy trans-

mission.

11-2



FIGURE | ENERGY TRANSMITTED BY SLIT FROM
INTENSITY SURFACE I (X,Y)
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STAR RADIATION

When

e-'k(xh- t‘f)/crz

I(X m) = _'“rq- , K = constant

we say that the intensity distribution is two-dimensional Gaussian. The

energy passing the slit relative to the total energy is
(5+5)-8(5-%
Gt = $(5+ >

where

The geometrical intensity distributions we will consider are:
a. Two dimensional Gaussian
b. Uniform isosceles triangle
c. Uniform rhombus -
d. Uniform rectangle
e. Uniform ellipse
f. Fraunhofer diffraction pattern.
Figure 2 shows the relative outputs for the intensity distributions a, b,
c, d, and e. The Fraunhofer diffraction pattern is considered at the end of
this subsection. Figures 3, 4, 6, and 7 show how closely a Gaussian intensity

distribution can approximate the other intensity distributions with respect to

I1-4
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slit output. These comparisons indicate that if the intensity distribution
is reasonably symmetric the output from a scanning slit can be thought of as
coming from a two-dimensional Gaussian intensity distribution. The Gaussian

approximations to the slit outputs are of the form

Go('&,' :_.:’k>= K‘.§((%:+ ;3__) c%‘)_ §((§_373;__)% S

-[B(8 - E) - 84 - B)]

K and o/cr1 are parameters chosen so as to make a ''good" fit.

The analytic derivations of the equations for the slit outputs follow.
We first determine the slit width relative to the intensity distribution so
that eighty percent of the energy is transmitted when the slit is centered
on the intensity distribution. For the uniform intensity distributions, one
needs only consider the 'base'" and its interaction with the slit (volume is
reduced to area). Thus, to determine the slit width, AS = (0.8) (AT)
where AS = area enclosed by slit and

Ag

total area of geometrical figure.
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Hence,
f(é-a—T;)V’({-_,.Tg) + S (?‘-‘-4-7'5)
LB ny -5 E)
os,'é.}sl-—'ri
o 20—
G)= »
.T'L“'Ff(f—r-%_)\f/—(f__g + sn(E-T z
I-Ts < lﬁLI < ,4-jzi
as o 20~
7 PEAPRTY

Diffraction Pattern:

The energy distribution resulting from a point source using a circular

aperture results in a relative light intensity distribution function of the

form

Fery = ( 2 S.U‘))"‘
e
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where r is proportional to the distance from the center of the image. A basic

problem iQ\to determine the accumulated energy to one side of a knife edge.

From this function one can then determine the energy transmitted by a slit of

finite width but infinite length. This is done by evaluating the cumulative

energy function at the two edges of the slit and taking their difference. At

the end of this subsection the function G is determined from G1 in this manner.
To determine the energy to one side of a knife edge we must integrate

I(x, y) over the region

R = i(x,u\) lxé 0.1

T(z4)= F(Vx*¢ ).

where

bet G, (a) = SSI(%%)JX‘J% ~
R

From the symmetry of F, q‘(a_) + G'(—a,) = Q- G‘(O) = G|(°°) -

Hee) = (§ 100y dady
%
h R'=f(‘l»‘3”°$x‘<°“>°$3}

Then %. o sec ®

H(m)=‘%g g [.T,Q(\—)/r"]-rArJ&

0

w 2+ a o sec ®
} ng/a(-“ﬂxm () + T, (r)lo de
r
= .'L& { 1- 32 (a-sec &) - 3';1((1.- sec &)l 46
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If we let t = a sec 8, then

oo a 2
H(>y = 2 S(|._ S.(E)- T3 (e)) _ dt
a t Nea-a=

= T - 2a S s2t) + ST 2

@t \N4£2-a%
Note that lim Hcea) =TT
a ~» do
Hence G'(0)=-£_-GCc>o)=Q.H(0o)= 27

From the symmetry of F we have for a > O,

G,(a) = Go) + R H(a)

Oe 2 a
4§w-_ag S.(t)+3‘,(t—)dtg
a ¢t

td_a‘:?—

I+ - Z2hen

a
< )
€

G, (a) = 4§7r _ S' 52(%) + 3% az,u-z aze
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To evaluate the integral a Chebyshev-Gauss quadrature formula was used,

namely, fcr £ even
m

( 1€ VR £ $(xy)
o am{;s .

o

where

=xkc; c_os[(.'lé—l)ﬂ’ ] ; k:’),..)m

$m

Figure 5 shows the graph of the function Gl. Figure 6 shows the graph

of

G(t) = G (++3)- 6(+- &

where TS represents the slit width. Note that Gaussian approximations are
very good except in the "tails". Figure 7 shows how G and Gaussian approxi-
mations compare for cases when the slit passes ninety percent and ninety-five
percent of the energy when the star is in the slit center.

The averaging affect of the slit again tends to obliterate the variations
of the image, so that the output of a slit crossing a two-dimensional Gaussian

intensity distribution approximates the diffraction pattern output.

II-16
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B. Comparison to Moving-Spot Scanning

In this section we wish to contrast the output of a moving-spot scanning
system and that of a moving slit. The spot is assumed to be rectangular in
shape. A rectangular spot can reasonably approximate the scanning spots used
in image orthocons, deflectable photomultipliers, and photographic plate
scanners. Suppose the optical system produces a diffraction pattern that is

two-dimensional Gaussian. The energy density in the focal plane is given by

I(x,4) = K e":'z’(x-“,,.u‘?)/a-a

21 &

where K is a constant.

Then the outputs of the slit and spot are

R (t) = SRUx,up dxdy
SLIT

Psror(t’u) = I(x,4)dx dy

‘{SPOT

I1-20
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where

= I T'
Rspor = g(x.-})lt --’%5_. sx$£+f§

See Figure 8 for symbol explanation.

The star is in the center of the slit when t = 0 and is in the center of the
spot when(t, u) = (0, 0).

The results of the above integration are

P = K- g te)

pspg:"_.u) = K/- Gc(t) GL:LL) , K= constanT

where
Gute) = G+ ) - (k -u)
and —_— t 2
) = _| -2%
? ar ) & dx
- Do
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The point to be made here is that for fixed u, P (t) is proportional

slit
to Pspot(t’ u).

These results can be slightly generalized. 1If the star image is
elliptical then the energy distribution is of the form
X +_‘¢i)
K TZro* 0%
I'(x,zj) = e

o} e ol Y

If the slit and spot move in a direction that is orthogonal to one of the
axes of the ellipse, the output for the slit and spot are still proportional
in the same sense as used previously.

For an arbitrary direction of motion across an elliptical image we do
not have any conclusive results.regarding the relation between the slit and
spot output. Thus, results derived for a moving slit can be applied directly

to a moving-spot scanner.
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C. Statistics of Photoemissions

To select a reasonable technique of processing photoelectric measurements,
we must consider the statistics of the photoemissions. There are basically
two approaches, or models, to describe the statistical distribution of the
number of photoelectric emissions in a fixed time period. The first model
describes the radiation incident on the photodetector as a stochastic sequence
of photon arrivals. The second model describes the radiation incident on the
photodetector as a stochastic wave. The wave model has three advantages.

(1) The wave model applies directly to radiation which has a wide
frequency spectrum.

(2) The wave model yields 'classical equations” for dim and bright
radiation.

(3) The results obtained with the photon model are special cases of
the results obtained with the wave model.

In the following discussion we will restrict our attention to the wave model,
The statistical characteristics of photon beams and photoemissions have been
discussed by Stern (1960), Jones (1962), Hisdal (1965), Fried (1965),
Grau (1965), Hodora (1965), Bolgiano (1964), Harwit (1960), Jones (1953), and
Fellgett (1949, 1959).

The following discussion of the wave model is based on results presented
by Mandel (1958, 1959). 1If one observes an average of n emissions in a period

T, the probability of obtaining n emissions is

/€

r'('n-i— T/f) %n('—%)T’

W [ (Ve)

pln,T) =

I1-24
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where

' J
I+ /5t

<b =

The parameter € is defined in terms of the normalized correlation function

v{(T) of the incident wave y(t). In particular,

E[ y(’r+t)y(t)]
Efyer]”

T
S = -;*.— (T-t) ¥ (1) d=

(o

¥ () =

The parameter £ has the dimension of time and can be interpreted as the
coherence time, and T/ represents the number of 'degrees of freedom." The
quantity n €/T is a basic parameter; it is the average number of photoemissions

in one coherence time. For a system in thermal equilibrium we can show that

nE _ (ch\)/kT,_ l)

——

T

where hy is the quantum energy, k is Boltzmann's constant, and To is the
temperature in degrees Kelvin, see Garbuny (1965), p. 418.

We can show directly that p(n, T) approaches a Poisson distribution as
n E/T approaches zero. This is the case in most stellar applications. On

the other hand, p(n, T) approaches a ''gamma distribution'" for large values of

I1-25
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n €/T. This limiting form represents the distribution of intensity of the
incident wave, since Mandel assumes the incident waves are Gaussian random
processes.

The variance of the number of emissions is
f'h-(l+ ﬁg/T).

For a dim source, the variance becomes n. For a bright source, the variance
becomes a2 g/T.

For stellar radiation, A\ is the order of 0.1 micron and £ =~ 1/Av is the
order of 10-15. (The effective response with an S-4 detector and a Type A
star is presented in Figure 4 of Section V.) Consequently, we may assume the
photoemissions form a Poisson process. Note that the output from a photo-
multiplier may deviate from Poisson even though the primary emissions are
Poisson, see Gadsden (1965). This deviation can be attributed to a loss of

electrons between the cathode and anode. In most cases, we can neglect this

effect.
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D. Effective Intensity of Star Radiation

The response of a star being observed with a photomultiplier is dependent
on a multitude of factors among which are the spectral energy distribution of
the star and the spectral response of the photoemisgive surface.

The sﬁectral energy distribution of a star has been studied using two
types of photometry, wide-band and narrow-band. 1In the first type, the radiant
energy from a star is integrated over several hundred angstroms by a combina-
tion of filters and a detector. Clearly, much of the detail of the spectral
energy distribution is lost in wide-band photometry. Hawever, extensive data
exists in this form* and if one is interested in only the gross features of
the spectral energy distribution, this is quite adequate.

In narrow-band photometry the radiant energy from a star is integrated
over regions less than 20 angstroms in width. Much more information is
gathered in this way and as yet, only a limited number of stars have been
studied.**

In order to study the gross features of star spectra it is necessary to
classify the stars according to their spectral response. A common classifi-

cation according to temperature is readily available. The classes considered

here are B, A, F, G, K, M.

Kkl

The spectral responses of the UBV color system are shown in Figure 9.

* Iriarte, et al,, (1965), pp. 21-31.
Jole Norton (1964), and Code (1960).

%%% Taken from Allen, C. W. (1963), p. 195.
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The magnitude of a star is thus obtained at three different wavelengths,
namely, .36 micron, .43 micron, .54 micron. These values are the wavelengths
at which the U, B, and V spectral résponses are maximum. Figures 10 and 11
show how the U-V and B-V magnitudes vary as a function of spectral class.
The list of stars used was a list published in Sky and Telescope by
Iriarte, et al., (1965). Using this data an average value for the U-V and
B-V ﬁagnitudes as a function of spectral class was obtained.

In the following discussion we assume the U, B, and V spectral responses
are simple bandpass filters. The effective intensity of a star in spectral C

(C =0, B, A, F, G, K, or M) is then

ch(x) ROVIR & T(R) R(R) - AX

where IC(X) is the spectral energy density of a star in class C, and where
R(A) is the response of the filter. In the present problem, A, is the wave-
length of the peak of the U, B, or V response. Also R(A,) and A\ are assumed
to be the same for each response. Therefore, the values of the spectral
energy density at the peak vavelength of the U, B, V responses are related

to the U, B, V magnitudes (denoted by Mt(U), MC(B), Mt(v)) through the follow-

ing equations
-4 M (V)
Ic(lu) =a- [O ‘
-.4M.(B)

Ic(le) = a-10
T(hy) =0 10" MV)
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where a is a constant of -proportionality.

It is then necessary to extrapolate and interpolate in order to "complete
the curve IC(K). For wavelengths below the Balmer cutoff .36 micron, IC(K)
is assumed to be constant. The attenuation at the Balmer cutoff is based on
data given by Greaves (1956). For values of A > .36, an interpolation function

of the form

ebdec ATy
Ic(l)=e(a bA+c A )X

was used. N is initially chosen to be zero. For this value the data points
sometimes yield an approximation with ¢y positive. For extrapolation in the
.54 to .70 micron range this yields poor results. Thus, we let N take on the

successive values of -1, -2, ... until the approximation gave us ¢ < 0.

We will determine the relative photoelectric intensity and magnitude of
stars in several spectral classes and for S$-4, S-11, $-20 detector responses;

see Figure 12.* The photoelectric intensity is
12
F(c,P)= @) I.(X)-S,(1)d2 ; P=s4,30,520
1!
where B is é constant of proportionality and where SP(A) is the spectral

response for the particular photoemissive device. The wavelengths Xl’ xz are

practical limits of the response SP(K). The above integral is evaluated

* Typical Absolute Spectral Response Characteristics of Photoemissive
Devices, ITT Components and Instrument Laboratory.
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approximately by means of Simpson's rule with an interval length of .02 micron
Note that absolute values are given in V.B for an S-4 response and a Type Ao
star.

Since Ao stars are frequently detected with S-4 photodetectors it is

convenient to evaluate the relative intensity and magnitudes:

F(c,P)
F(Ao, $-4)

i

F*(c,P)

i

M*(c,P) - 2.5 Jog, F (C,P)

These values are graphed in Figures 13 and 14.
Suppose stars of spectral class ¢y and c, are viewed by photoemissive

surfaces Py and Pys respectively. The ratio of their intensities is
o
FT (e, ?P) F(c,R)
*
F (Ca)Pa) F(CQ’PD.)

and their difference in magnitude is

F*(c,,®)
" F*(ca,R)

M*(cnpl) - M*<c2)P;_) =-2.95 )os
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I1I. STELLAR BACKGROUND RADIATION

A. Introduction

A celestial frame of reference can be obtained by observing star transits
through a scanning slit. The characteristics of such systems with respect to
star detection and location have been previously investigated by Farrell and
Zimmerman.* This section is primarily concerned with developing models for
the stellar background noise in such systems.

In particular, the scanning system consists of lens, slotted reticle,
and photomultiplier. A star field is focussed on the reticle, which is fixed
relative to the lens and photomultiplier. The entire system rotates; conse-
quently the star field moves across the slit. See Figure 1. The following
results apply equally to systems in which the reticle moves, with a fixed lens
and photomultiplier.

As the star field moves across the slit, the amount of radiation reaching
the photomultiplier fluctuates, with a corresponding variation in its output.
The output from a bright star represents a '"signal'; the output from weak
stars represents background "noise." See Figure 2. The background noise
has two components: photon noise and spatial noise. The photon noise results
from the quantum character of the photoelectric emissions. The spatial noise
results from scanning the random spatial distribution of weak stars.

Other sources of interferring radiation include zodiacal light and airglow.

Zodiacal light is sunlight reflected by meteoric material and by dust grains

* Farrell, E. J. and C. D. Zimmerman (1965).
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of uncertain origin, which form a ring around the sun in the ecliptic plane.
Measured in units of equivalent tenth magnitude stars pér square degree
zodiacal light varies from 30,000 (points near the sun) to 160 (points away
from the sun).* Airglow is an illumination suffused over the sky which
originates in the atmosphere and occurs mainly at altitudes of from 60 to 120
miles. The most intense radiation appears to be in the infrared. Airglow
places a limit on the faintest celestial objects that can be detected photo-
electrically and photographically from the surface of earth. 1In the total
night sky radiation (no moon present), the contributions from zodiacal light
and airglow have been estimated to be as much as 65 percent.** Special
techniques must be used to minimize the effect of this radiation for scanning
systems which encounter the earth's atmosphere and the ecliptic plane.

A basic problem is to discriminate between the desired signals and un-
desired signals from the background. The optimum detection technique depends
on the characteristics of the signals. In scanning optical systems, we en-
counter three operating situationms.

In the first situation, the detection technique must discriminate against
"false" star detections, i.e., detections resulting from dark current, zodiacal
light, "very weak' stars (stars with intensities several stellar magnitudes

below that of the weakest star of interest), and radiation from the atmosphere,

when observations are made from Earth. The sporatic detections of "weak"

*  Allen, C. W. (1963), p. 159.

%% Chapman, R. M. and R. O'B. Carpenter (1959).
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PR

stars (i.e., stars with stellar magnitudes near that of the weakest star of
interest) are acceptable in this operating gituation. The optimum technique
maximizes the probability of detecting the weakest star of interest with a
fixed probability of detecting a false star. Several detection techniques

for this situation are described in Subsection VI.B. The expected number of
false star detections in one scan period is approximately equal to the product
of (1) the number of '"slit positions" in one scan and (2) the probability of
detecting a false star. 1In this section we are primarily interested in the
second and third operating situations.

In the second operating situation, the detection technique must discrimi-
nate against weak stars. False star detections can be neglected. The stars
of interest are relatively bright. Hence, weak star detections are widely
spaced in time and are statistically independent. The optimum technique
maximizes the probability of detecting the weakest star of interest with a
fixed probability of detecting the brightest weak star that we must discrimi-
nate against. Detection techniques for this situation are described in
Subsection VI.B. The optimum technique uses a holding filter, i.e., a filter
with a rectangular impulse response. If the filter output exceeds a pre-~
assigned threshold, a star is present. In the following paragraphs
(Subsections B, C, D, and E) we develop two models for the weak star back-
ground, and determine the expected number of weak star detections in one scan
period. A holding filter is used.

In the third operating situation the detection technique must discriminate

against weak stars: but in this case, the detections are not independent.

III-5
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The stars of interest are relatively weak. The primary cause of variability
in the photomultiplier output (in the absence of a bright star) is the vari-
ability in the spatial distribution of weak stars. In this situation the
goal is to select a detection filter that maximizes the ratio of the output
signal level to output rms noise level. Detection techniques for this situa-
tion are described in Subsection VI.B. In the following paragraphs (Sub-
sections F and G), we describe the characteristics of the background noise

in the filter output. The dependence of spatial noise on the slit width and
optical resoultion is derived; also the magnitude of the photon noise and
spatial noise are compared. A similar problem has been studied for scanning
photographic plates.* Because of the random variations in granularity across
the plate, one obtains a scanning noise like that obtained in scanning a
stellar background. On the other hand, there are several differences. 1In
photographs the "elements" one scans are the photographic grains, which are
opaque with sharp edges. Also, the scanning aperture is gemnerally circular;
photon noise is neglected. When scanning photoelectric star images, the basic
elements are nebulous due to optical aberrations. Also, the aperture is

rectangular and photon noise is very significant.

* For a more complete discussion see 0'Neil, E. L., (1963), pp. 109-121.
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B. Weak Star Background: Statistical Model

In this subsection we will describe a statistical model of the weak star
background for the second operating situation described above. Weak star
detections are widely separated in time and are statistically independent.

False star detections can be neglected. Also we assume that the detection

filter has a rectangular impulse response. 1In addition to the weak stars, the

background radiation has a homogeneous component from the very weak stars.
The homogeneous component varies across the celestial sphere. 1In the next
subsection, C, we will describe a "simulation model" of the background using
the same assumptions. In evaluating the expected number of star detections
in one scan, we assume a statistical distribution for the weak stars. 1In
subsection C, however, a star map determines the affect of the weak stars.
Let a two-dimensional surface S have points distributed at random with
intensity function vs(e, #). The probability of N points being contained in

5. € 8 is

1

(S0
oM

/L <,S|>
N!

where

/‘A(Sn) = QS<G)QBJBJ?

Also, the number of points in non-overlapping areas are independent random

variables.
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For our applications, S will be a unit sphere representing the galactic
sphere (equator coincides with the Milky Way) and Vg will depend only on
galactic 1atitude.* In this section, Vg will be latitude gymmetric. However,
in Subsection C, latitude asymmetries are introduced in the homogeneous com-
ponent. The field of view of the scanning system in general is a spherical
cap with the center deleted. See Figure 3.

Let N(es) be the number of points encountered by scanning through an
angle es. See Figure 3 for definitions. We will show that N(es) is a non-
homogeneous Poisson process.** There are five conditions that must be satis-
fied for this to be true.

(0) N(Q0) = 0 because of the definition of N.

1) N(es), SS > 0 has independent increments since for

0 <@, < 62 < 93 < 94, s(e4 - 63) S(e2 - el) are non-overlapping

1
areas. See Figure 3 for the definition of S(8).

(2) For 6, > 0, 0 < P[N(es) > 0] < 1 since P[N(es) >0] =1 - e ™S yhere

po - g& ),(8,3) d8dp > o
s(8,)

(3) For simplicity, let u(es) = u(S(es)). If

/L*(Ae) = (64481~ po (65)

* See Trumpler, R. J. and H. F. Weaver, (1953), Chapter 5.1.

%%  Parzen, E., (1962), Chapter 4.
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then |y, _PLN(Bs+20) - N(8) =2 ]
abso  PIN(p +A6) -N(6) =1 ]

| g R (B8 Li-pa8)]

= )"-W\ -
aga0 e (a8) ,'L*‘(AB_)
= im [- e ™ (1+m)
m=20 _rne—-rn =0
@ . (- P{N(6+ae) - N(8) =0O] et (50)
P AG = |im
g0 AB90 pa\’g
_ (8 +A8) pe (B +a0) 4 (6y)
= Jim e * c - e
AB—0 AB

= ,u-/(%)

Thus, the mean of the process N(es) is

e (6 = & Vv (8,9) d&dep
S(&)

vs(e, @) depends on the magnitude of the point source. For the sake of ana-
lytic simplicity v(z) = vS(G, sin-1 z) has been assumed to be quadratic in z.
In particular, let VM and Y be the functions describing the densities of stars
of magnitude M and the homogeneous background respectively. By a star of

magnitude M we mean any star with magnitude between M - % and M + %.

One of the fundamental quantities to determine is the probability of

I71I-10



STELLAR BACKGROUND RADIATION

detecting a star of magnitude M. The probability of detecting an Mth magnitude

star when the star occurs at angle ® in the scan plane is

me)y= > /uMm) “/IMM)

Nz » /
where
— Te + TeAgx
/{M/g) = d—gq Eo 2-,.1 Hmax + *Eq €o )'076[9) £ §/d
= fraction of photoelectric pulses transmitted by a threshold clamp
eq = quantum efficiency of photomultiplier
€, = optical efficiency of lens system
KM = number of photons per second being received from an Mth magnitude

star at the photocathode

(5.06 x 100)e "2 M | 2

D = diameter of aperture in inches

jas)
]

max (H(t)

=

—~
T

~
]

output of holding filter relative to the rate at which pulses are
being received

T. = time duration of holding filter
T = time for star to cross slit

Xd = rate at which noise pulses are being generated by the photomultiplier

)Zb(e} =/L(L(9 + esw/.z) —‘/ab(é —95\.1/.2_)

IT1-11
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pu(®) = &g 4
S(e)

esw = slit width

A diagram of the detection electronics is presented in Figure 4. The
output of the photomultiplier is a sequence of pulses with random amplitudes
and separations. Since the amplitude variations do not contain information
about the stars, the output pulses are clamped to a fixed level when they
exceed a minimum amplitude. A detailed discussion of this technique is given
in Subsection VI.B.

Let VM(e) = pﬁ(e) be the intensity of the non-stationary Poisson process
which describes the number of MFh magnitude stars crossed while scanning
through an angle 6. Then PM(G) . vM(e) is the intensity of a non-stationary
Poisson process which describes the number of star detections while scanning
through an angle 6. Thus, the expected number of Mth magnitude star detections

in one scan is

an
P, (8) ¥ €& d&

o

A numerical method of integration will be used to evaluate this latter integral.

See Subsection D.l.

An alternative and more exact approach can be used to find the expected

number of star detections. We propose to use a star map which includes all

ITI-12
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stars of photographic magnitude 7.5 and brighter along with their position.
See Subsection E.l for star map information. To find the expected number of

star detections, we simply sum their probabilities of detection.

III-14
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C. Weak Star Background: Simulation Model

In many applications of a conical scanner, the sensor remains at
essentially the same galactic longitude for many scans. In this case, the
averaging effect of the strip type scan is not exhibited and a stored star
map is necessary to evaluate the effect of weak stars on the number of
detections.

The following model is used to evaluate the weak star component. The
system parameters and data handling capability define a limiting magnitude
(ML). We wish to detect all stars brighter than ML and to keep other
detections resulting from stars with magnitude greater than ML smaller than
some number specified by the data handling capability of the system. If we
detect a limiting star with probability .9, any star of magnitude larger
than ML + 2 would have essentially zero probability of detection. We, thus,
assume that all stars of magnitude greater than ML + 2 form the homogeneous
component of the background and that the weak stars have magnitudes between
ML and ML + 2.

In practice, we initially assume that all stars of magnitude greater
than 7.5 form the homogeneous component. Qur stored star map includes all
stars of photographic magnitude smaller than 7.5 ordered by magnitude; a total
of 15173 stars. Once a limiting magnitude has been determined, the homogeneous
component of the background is adjusted so as to include all the weak stars
with magnitude between ML + 2 and 7.5. Probabilities of detection are then

computed on the basis of this adjusted homogeneous component.

ITII-15
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FLOWCHART

Input

System Parameters
Program Constants
Star Map

N

Pointing Direction
Specified in Galactic
Direction Cosines

Compute Background Yes

Points

From Limiting
Magnitude Construct
4 g New Set of Homogeneous
Background Density

I = LST where
LST is the Index of
the First Weak Star

'

for Weak Star st~

l

Compute Probability
of Detection

4

Cunulatively Sum

AN

/Is Star I in the
Field of View

No

4

Is List

These Probabilities
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1. Coordinate Transformation

Let F(zg) be the function describing the homogeneous background. z_ = sin ¢

where ¢ is the galactic latitude. For a particular scanning system we wish

to determine the homogeneous background entering the slit at an arbitrary

position in the scan.

Let ¢L and ¢H be lower and upper limits on the scanned region.
¢ =<}S—Fov
L 2
Py

¢+FOV
where FOV is the field of view (see Figures 3 and 5).

I.e.

3

f}

o 18

Two successive rotations

will place the spin axis on one of the coordinate axes. The required trans-~
formation is

Xg Cos 55 Cos +q —~Sineg —Cos-cgsmsg b4
%3’ SIn “g Cos gg Cos g _sm.L}Su\S'i,
2} SIn s:_ o)

Thus, the homogeneous background as a function of the angle es and slit

width sw is

II1I-17
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7 16s] 54 3
0= ( (e yao-
Had0) =\ \F(z2)do = F(XsinS,+2cosSy ) Sing df L&
E;CFE) k%l‘if ¢L
=N

0< b < . <1

Since SW is very small (a few minutes of arc) relative to the field of view

u
/as(f" = Sw- gF(Cosqﬂsmsa,-‘- Sm¢(.’o$ 956'05%3-'5:'\95495,
¢

The latter integral is evaluated numerically using Simpson's rule with approxi-

mately 1.75 points per degree.

2. Determination of Reference Angle ec
Figure 6 shows the geometrical relationship between the necessary vectors

to determine the angle (Gc) at which a star occurs in the scan.

A

The galactic sphere is assumed to have radius one. Thus S¢ and sp are

S
unit position vectors of the star and spin axis respectively. Ty is a vector

~ ~
-

in the zg direction. r, is a vector orthogonal to sp and in the plane of sp

~

and S+ Hence,
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Then

2 g; - (él'sgr 3(:£ é;;B

A

f0- 2 5, 101= (5.5,
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3. Program Description

The program is an assembly of several subroutines which in several cases
use the same constants. To describe some of these constants a description of
the star map and homogeneous background construction is necessary.

The star tape contains 15173 stars ordered by photographic magnitude.
Each record on the tape contains the general catalog number, photographic
magnitude, and the three direction cosines on the galactic sphere. The right
handed coordinate system (xg, yg, zg) imposed on the galactic sphere is one in
which the z axis passes through the galactic north pole and the xg axis passes
through the point of intersection of the galactic and celestial equators which
has the smallest celestial right ascension angle (descending node). By the
index of a star we mean the position of the star in the magnitude ordered

list. 1Index 1 is the brightest star and index 15173 the dimmest star.

For background purposes the galactic sphere is divided into 21 latitude

classes.
Class Galactic Latitude Range
1 (-90, -85)
2 (-85, -75)
3 (-75, -65)
é (—25: -15)
9 (~15, -7.5)
10 (-7.5, -2.5)
11 (-2.5, 2.5)

I11-22
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Class Galactic Latitude Range
12 (2.5, 7.5)
21 (85, 90)

We originally started out with the homogeneous background generated by
stars of 7.5 magnitude and weaker. The data used was latitude symmetric and
is expressed in number of tenth magnitude stars per square degree. Since the
resolution of the system determines the homogeneous background component, the
background density list is altered by including in it stars which are brighter
than 7.5 magnitude. To augment a group of weak stars to the list, they are
first put through a sieve to determine which latitude class they belong in and
then their magnitude is converted to an equivalent number of tenth magnitude

stars. We thus generate a homogeneous background which is latitude asymmetric.

Definition of Symbols:

NOSTAR

WMAG

GX

GY

GZ : These symbols stand for arrays which hold respectively the star
general catalog number, photographic magnitude and the three
direction cosines.

DPTSAG : The array giving the number of tenth magnitude stars per
square degree for each of the 21 latitude classes.

INDAG : Index of the star list for which DPTSAG is computed. 1I.e.,

all stars of magnitude > WMAG(INDAG) are used in determining
DPTSAG.

I1T1-23
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DLBDS
ZLAT : These arrays are used only to determine the latitude classes
and class boundaries.
4. Description of Subroutines

a. Call Statement: DPTSCP(PRMAG)

This subroutine updates the star density list for a new limiting magnitude.
PRMAG is the magnitude limit for computing the new background list. AIll
stars with magnitude > PRMAG are to be included in the list. The subroutine
assumes that it is given an initial density points list. To each of the
21 latitude classes there corresponds a number which represents the equivalent
number of tenth magnitude stars per square degree for that class (array DPTSAG).
Suppose stars of a certain magnitude range are to be added to the density list.
A sieve determines that a given star belongs in latitude class I. The star is
then converted to the equivalent number of tenth magnitude stars. This
number is added to the number in CLSLAT(I). Thus CLSLAT is an array whose
members represent the total number of tenth magnitude stars that are to be

added to the respective latitude classes.

I1I-24
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FLOWCHART: UPDATING STAR DENSITY LIST

INDAG = Starting
Index of Present
Density List

' Set Array
CLSILAT to Zero
PRMAG = New
Limiting Magnitude
for Which we
Wish to Adjust

s 7

>
WMAG (INDAG) : PRMAG
\ ( ) 7’“

INDAG = INDAG + 1

>
<INDAG: 15173—>—
s
>
{ WMAG (INDAG) : PRMiC>——
<

Subtract WMAG (INDAG)
from CLSLAT

_ | Add WMAG (INDAG)
to CLSLAT

INDAG = INDAG - 1

—< WMAG (INDAG) : PRMA(>

INDAG = INDAG -~ 1

[ 1
Update Star -
Density List
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b, Call Statement: DENFN(ZARG, VALUE)

This subroutine interpolates between the points given in DPTSAG. ZARG is
the argument of the function and VALUE is the interpolated value. Given ZARG
the routine determines the latitude class that ZARG belongs to and then chooses
the density point for that class along with the density points on either side.
Thus given the three points X < Xy < X3 the form of the quadratic interpolating

polynomial due to Lagrange is

F(x) = Z-Xa . X-%X3 F(x,) * X=X . %x—%3 F(x,. )
Xi=Xa Xi- X3 Xa-% K- Xa

+ x;—u:.'x_xa . F<x33

c. Call Statement: BKGDPD(NUMSTR, PTDIRC, PHIS, PHIL, BKVAL)
This subroutine computes the average homogeneous background passing the
slit when the star with index NUMSTR is being observed. 1In particular, it

approximates

Pu
F(c¢>s¢ SmS? +Sm¢ Cos &G CoSS.é ) - Sl'nsé a’yS
¢

by the use of Simpson’'s rule.

PTDIRC is an array giving the direction cosines of the pointing direction.

PHIS = dL
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PHIL = ¢H

BKVAL gives the number of tenth magnitude stars per arc minute passing
the slit.

The other subroutines present in the program are assembly or service routines.

Their function is explained via common statements.

5. Program Usage

The program uses two data input media. A magnetic tape with the star
list and a set of two cards which give the initial values of DPTSAG and INDAG,
All statements through number 35 must be present to compute the necessary
constants and to read in the data. The next ten constants can be altered to

present different systems to the program.

LISTNO = ordered list number of the limiting magnitude star.

LTAU = detection threshold.

APED = aperture diameter in inches.

DARK = number of dark current pulses from the photomultiplier.

TTS = transit time of star (seconds).

SW = slit width in minutes of arc.

SPHIS

SPHIL. = the smallest and largest angles of the field of view as measured
from the spin axis (degrees).

TRAS

DECA = celestial right ascension and declination of the spin axis

(degrees).

A program listing appears in E.2.
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D. Applications of Models

In this subsection we compare the different background models on the
basis of the expected number of star detections in one scan. Two different

scanning systems are examined.

1. Strip Type Scan With No Stored Star Map

The basic scanning geometry is shown in Figure 7. The assumption that
the density of weak stars of a given magnitude and the homogeneous background
can be approximated.by quadratic functions enables ome to compute most of the
resulting integrals analytically. See E.3 for derivations.

The data for homogeneous background and star densities aere taken from
Allen.* Figure 8 shows the graph of the star background versus the galactic
latitude,

Figures 9 and 10 show the relations between the cumulative background,
the scan plane angle (GS), the scan plane inclination (&), and the field of
view (8).

In particular, the quadratic functions used to approximate the homogeneous
background and weak star densities are

Vo (2) =128 - 232 z + I 27

Vy (2) = 0188 - .0ai4 z +.0i57 2*
Vg (2) = .0553 - .0%R82 2 + 0487 22
v (&) = .18 230 2 + .1ag z2

v, (2)

332 - .372 2 + .5¢ 272

*  Allen, C. W. (1955), pp. 213, 214.
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where z = sin 6g and 6g is the galactic latitude.
The system parameters for this example are for a spinning rocket sensor
considered by Kenimer, R. L. and T. M. Walsh, (1964).
Aperture diameter: 5.08 inches
Field of View: 6° x 6° rectangular
Optical efficiency: .5
Quantum efficiency: .12
Slit size; 6° x .015° (8 slits)
Spin rate: 270° per second
The threshold is set so that a third magnitude star occurring in a mini-
mum homogeneous background field will be detected with probability 0.9. The
homogeneous background includes all stars of 7.5 magnitude and weaker,
The simulation used pointing direction galactic right ascension and
declinations of

©°, 90%

0%, 60%, (30°, 60°%), ..., (330°, 60%)

0%, 309, (30°, 30%, ..., (330°, 309

(o] o]

°, 0%, (30°, 0°

Y, ...y (330°%, 09)

For each pointing direction a star map was searched to find the stars with
magnitudes between 3.5 and 7.5 that occurred in the field of view. The slit
was then superimposed over the star to determine the homogeneous background
component. Finally, the probability of detection was computed. The expected
number of weak star detections is the sum of these probabilities. Figure 11

indicates the relationship between the statistical model and the simulation.
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A relatively small computer is needed for the computations involved in the
statistical model, whereas, a large amount of storage is needed for the

simulation.

2. Comparison to Simple Model

One of the proposed Tiros satellites makes use of a scanning optical
system in which the optical axis is inclined 14 degrees from the spin axis.
In order to meet accuracy and data handling requirements, the following

system and design parameters were chosen:

aperture diameter .411 inch
scan period 6 seconds
slit width 6 minutes of arc
optical efficiency .75
photomultiplier EMR 541A-01-14
dark current equivalent

photoelectron rate 2540 per second
quantum efficiency .15

Figure 12 shows how the statistical simulation model compares with a
simple magnitude dependent weak star detection model. This latter model
assumes that stars with magnitudes between M - % and M + % are distributed
uniformly over the sphere. The homogeneous background value was taken as the
average of the minimum and maximum values as indicated in an integrated star

*
light map which is latitude and longitude dependent.

* Megill, L. R. and F. E. Roach (1961).
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The latter model does not compute the homogeneous background component
and is not subject to weak star density variations. The first model, however,
is completely automatic and does account for weak star density variations.
Figure 12 indicates that the two models agree reasonably well for the case
considered, but greater variability will most likely be exhibited in further
cases.

The optical designer must know the slit width as measured from the lens.
Figure 13 shows the relationship between the slit width as measured from the
spin axis (SW) and from the lens (SW'). Note that SW' = SW sin vy. Thus,

SW' ig a function of distance from the spin axis, whereas, SW is constant.
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E. Special Results and Derivations

This subsection contains some special calculations and data necessary
for the listing of the previous results. It includes the details of the
construction of the star tape and computer program used in-the simulation
model. E.4 contains a table of star background radiation along with a

coordinate conversion chart.

1. Construction of Star Tape

The original data was in the form of punched cards. The data on these
cards was taken from the Albany General Star Catalog which lists 33,342 stars,
ordered by celestial right ascension. Each card contained the catalog number,
visual magnitude, spectral class, right ascension and declination angles of
the given star.

The visual magnitude of the stars was transformed to photographic
magnitudes by using the spectral class of each star. The transformation used

was

photographic _ - - visual
magnitude B -V -11 magnitude

*
where B - V is the color index of the star. Only stars whose photographic

magnitudes were 7.5 or less were used.

* Allen, C. W. (1963), p. 197.
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The color index and spectral class exhibit a strong quadratic correlation.
See Figure l4. A quadratic polynomial was used to estimate this correlation
with the fifty brightest stars providing the data points. The polynomial

used was
B-V=- .,43+4+58 (- .06 + .04 S)

where S is the spectral code used. See Figure l4.

The celestial direction cosines were computed using a right-handed xyz
triad with z-axis passing through the celestial North Pole and the x-axis
passing through the First Point of Aries (OO right ascension). The galactic
direction cosines were then computed by a series of two rotations. First
rotate 102O about the z-axis to produce an x'y'z' system. Then rotate -62°

about the y'-axis to produce the nggzg system, The composite transformation

is
X‘a_ -Cos 79 ° sSin78° O X
G4 | = | —sin 7° cos¢a® ~cos° Cose2®  ~Sinea® y
2 —5in78° Sin€2® —cCosca®Cos78° Cos 62’ 2

The final tape contains a list of the brightest 15173 stars ordered by
photographic magnitude (7.5 magnitude and brighter). Each record also

contains the star catalog number and its three galactic direction cosines.
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2. Program Listing

PROGRAM SIMUL2
DIMENSION DCP (3}
1:DPTSAG(2)) +CLBDS (21) 92LAT (21)
24,NOSTAR(16000) ¢WMAG (16000) 16X (16000) 46GY (16000252 (16000)
COMMON DPTSAG INDAGsCLBDSZLAT
COMMON/1/ GX
COMMON/2/ (Y462
COMMON/3/ WMAG,NOSTAR
DTR=.017453292520
CLBDS(1)=SINF (2,5%DTR)
CLBDS(2)=SINF (7.5%DTR)
DO 45 Jx3,10
ALAT®=10#1=15
45 CLBDS(I)=SINF{ALAT®#DTR)
cLBDS (11} =)
DO 50 1=3,9
FI=1
ZLAT(TI«12)2SINF(FI®10.#0TR}
Mlzel+]10
50 ZLAT (M1 )RaZLAT(1+12)
ZLAT(12)=SINF (5.#DTR)
ZLAT(10)=«ZLAT(12)
ZLAT(11)=0
READ 60, (DPTSAG(I) 1I51421)9INDAG
6n FORMAT(11F742/10F7.2+110)
INDTO=185)74
REWIND 3

READINPUTTAPE3 99009 (NOSTAR(I) s WMAG (1) 46X (T)2GY(I)4GZ(I)sIl=lsINDTO)

9n FORMAT (3X4154F9e2¢3F13.8)
PRINT 95,NOSTAR(1) ¢WMAG(])
PRINT 95,NOSTAR(INDTO)  WMAG (INDTO)

95 FORMAT({3Xs154F9.2)
PRINT 35, INDAG (1+DPTSAG(I)sIx1421)

35 FORMAT (//+5X,6HINDAGEIT/(120+E20,10))
APED=,41)
NARK=2540
TTS=.,00688927
SW=g
SPHIS=4
SPHIL=24
NO 100 NPD=1,5
READ 105yRTASsDECAsLISTNOWLTAY

105 FORMAT(2F10.5+2110}
CALL DIRCOS(RTAS+DECAWDCP(1)+DCP(2),DCP( 3))
PRINT 15,RTAS.DECA

15 FORMAT (//45Xy20HPOINTING DIR RT AS mF%e0y7 95X
1, 20HPOINTING DIR DEC =F&.0)
CALL EXPWSDILISTNO¢DCPsSPHISsSPHIL»APEDeTTSsSWeDARKsLTAUANS)
PRINT 25,aNS

25 FORMAT (10X9s27HEXPECTED NOe OF DETECTIONS=E17.9)

100 CONTINUE
END
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SUBROUTINE EXPWSD(LSTNOSsDRCOPTsDPHISsDPHILIAPEDIAs»TTSCrSWMNsDKCR
1yNETAU,EXPND)

DIMENSION DRCOPT(3)

1+DPTSAG(21)9CLBDS (21) #ZLAT(21)
2.NOSTAR(16000) ¢+ WMAG (16000) ¢GX (16000) +6Y (16000) *BZ (16000)

COMMON DPTSAG» INDAGsCLBDS+ZLAT

COMMON/1/ GX

COMMON/2/ GBY,G62Z

COMMON/3/ WMAG¢NOSTAR

EXPECTED NO OF WEAK STAR DETECTIONS
LSTNOSEINDEX OF LIMITING MAG.sDRCOPTaDIR COS OF POINTING DIR.epPHISyDPHI| ®SLIT

LENGTH IN DEG FROM SPIN AXISe.APEDIA=APERTURE DIA IN INCHES.+TTSC2aTRANSET
TIME IN SEC.+SWMNaSLIT WIDTH IN MIN OF AKCe.DKCR=DARK CURRENT IN PULSES/SEC..
NETAU=THRESHOLD, « EXPNO=EXPECTED NO OF wEAK STAR DEIECTIONS
YIXTIMEF (XX)
NOOSTS=15174
EXPNO=Q
NDTR=z.017453292520
RPHIS=EDTR®*DPHIS
RPHIL=DTR®DPHIL
CLIMS=ECOSF (RPHIS)
CLIML=COSF (RPHIL)
80 FLMP22WMAG (LSTNOS) +2¢
40 CALL DPYSCP(FLMP2)
KTR=0
LST2LSTNOS*1
DO 10 1= ST«NOOSTS
IF (WMAG(I)=FLMP2) 20920030
30 PRINT 35,KTR
35 FORMAT (10Xs26HTOTAL NO OF STARS IN SCAN=17)
YT=TIMEF (XX)
TTIME=YT=Y]
PRINT 45,TTIME
45 FORMAT (2X913HTIME IN MSEC®E]17.9)
RETURN
20 COSANG=DRCOPT (1) *GX (1) «DRCOPT (2)#GY (1) «DRCOPT(3)#6Z (1)
IF (COSANG=CLIMS) 60410410
60 IF(CLIML=COSANG) 704+10:10 .
70 CALL PRODET(I+DRCOPTeRPHIS+RPHIL+APEDIAYTTSCoySWUNIDKCRINETAV
14PRDET)
KTRsKTRe)
EXPNO®EXPNO+PRDET
PRINT 95, I+NOSTAR(I)sWMAG(]I) ¢PRDET
95 FORMAT(21100F9,2+E£209)
IF (PRDET~,00001) B0»10,10
B0 PRINT B5,19WMAGI(I)
85 FORMAT (//¢2Xe34HPROB OF DETECTION LESS THEN 40000147
12XsSHWMAG (1592H) =F7,2)
60 TO 90
10 CONTINUE
90 CONTINUE
PRINT 35,KTR
YT=TIMEF (XX}
TTIMESYTmY]
PRINT 45,TTIME
RETURN
END
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SUBROUTINEPRODET (NUMBST,DIRCPTPPHIS,PPHILYAPDIaMs TTSECYSWMIN,DRKC
1URyNWTAU+PRDECT)
DIMENSION DIRCPT(3)
1.0PTSAG(21) +CLBDS(21) vZLAT(2])
2,NOSTAR(16000) +WMAG ({16000} 16X (16000) +6Y{16000) +9Z (16000}
COMMON DPTSAGy INDAGsCLBDSsZLAT
COMMON/1/ 6X
COMMON/2/ GY,GZ
COMMON/3/ WMAB,NOSTAR
PROBABILITY OF DETECTION
NUMBST=INDEX OF STAR..DIRCPT=DIR €OS OF POINTING DIReoPPHISsPPHIL=SLIT | ENGTH
IN RAD FROM SPIN AXIS,APDIAMEAPERTURE DIAM IN INeoTTSEC®TRANSIT TIME IN SEC.
SWMIN®SLIT WIOTH IN MIN OF ARC,..DRKCURaDARK CURRENT PULSES/SECss
NwTAUSTHRESHOLD, « PRDECT®PROB OF DECT.
CALL BKGDPD (NUMBST(DIRCPTsPPHISPPHTL +BKTENM)
FFACT=,1125
FFACT IS THE PRODUCT OF CLAMP LEVEL.OPTJCAL EFFICIENCYsGQUANTUM EFFICIENCY
BKMEANSBKTENM#SWMIN®] . 20E7T#APDIAM®# 3#EXPF (29,21 ) #TTSEC#FFACT
STMEAN® ] , 20ET7#APDIAM*# 2 *EXPF (w4921 #WMAG (NUMBST) } sTTSEC*FFACT
FALPHARY,
C  FALPHA IS THE CLAMP LEVEL
DCMEAN®=DRKCURSTTSEC*F ALPHA
TOTMEN=STMEAN+BKMEAN*DCMEAN
CALL POSTAL (TOTMEN,NWTAUPRDECT)
RETURN
END

OO0 0

o

SUBROUTINE POSTAL (FMPTeNTAU.VPT)
C FMPT=MEAN NTAUsTHRESHOLD VPT=TAIL VALJE
€ SuMs THE TAIL STARTING AT NTAUs)
IF (FMPT=50e) 30930440
40 FTAUBNTAU
SDV=SQRTF (FVPT)
CALL CUMNORI(FTAU»1,.9sFMPTsSDV.VPTC)
VPTSIQ'VPTC
RETURN
30 CONTINUE
TERM=]
DO 10 J=14NTAU
DIV=NTAU=J*]
10 TERMETERM®#FMPT/DIVel.
VPTE] o »EXPF (=FMPT) #TERM
IF(VPT=,1E=7) 15420420
15 VPT=0
20 RETURN
END
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SUBROUTINE BKGBDPD (NUMSTRsPTDIRCyPHIS,PHIL»BKVAL)
DIMENSION PTDIRC(3)

1,DPTSAG(21) v CLBDS(21)92LAT(21)
2,NOSTAR(16000) s WMAG (16000 2GX (16000) +6Y (16000} 952 (16000)
COMMON DPTSAG INDAGyCLRDS»ZLAT

COMMON/1/ GX

COMMON/2/ GY,867

COMMON/3/ WMAGB,NOSTAR
MPUTES THE BACKGROUND DENSITY IN NO ofF 10TH MAG STARS/ARC MINUTE
ZDP=PTDIRC(3)

IF (ABSF(ZDP)=1,) 10092004300

PRINT 3509ZDPyNUMSTR

FORMAT (39HERROR IN POINTING DIRECTION COORDINATES+E}9.9¢110)
RETURN

COTHEC=0

GO TO 60

ZDT=GZ (NUMSTR)

PDT=PTDIRC (1) #GX (NUMSTR) ¢PTDIRC (2) #GY (NUMSTR) +PTDIRC (3) *GZ (NUMSTR)
IF (ABSF (PDT)=1,) 6001400+400

PRINT 450+PDTWNUMSTRy (PTDIRC(I)s1%1,3)

FORMAT (35HERROR OR STAR AT POINTING DIRECTION'/+E19.9¢11093E19.9)
COTHEC= (2DT=PDT#ZDP) /SORTF ((1,=ZDP®82) ® (] e=pDT**2})
SIDLG=PTDIRC (3)

CODLG=SQRTF (1,»SIDLG**2)

NN= (PHIL=PHIS) #100

NN=NN/2#24+3

ZN=ENN

HINTS (PHIL=PHIS) / (ZN=1,)

NG=NNe]

S4=Q

DO 10 I=m2¢N&,2

Z1=1

ARGUS (ZIw1e ) ®HINT*PHIS

SIPHI=SINF (ARGU)

FARG=COSF (ARGU)*SIDLG+SIPHI®COTHEC*c0DLG

CALL DENFN(FARGsFNV)

S4ESGSFNVASIPH]

S4mi, L3417

s2=0

NZ2=NN=p

DO 20 I=3,N2,2

Yism}

ARGUS (YIw]1e) ®HINT+PHIS

SIPHI=SINF (ARGU)

FARG=COSF (ARGU) *SIDLG+SIPHI®COTHEC®CODLG

CALL DENFN{(FARGFNV)

S2=S2¢FNVSIPHI

S2=2,%52

SIPHIS=SINF (PHIS)

FARGS=®COSF(PHIS) #SIDLG+SIPHIS®COTHEL#»CODLG

CALL DENFN{FARGSFNVS)

SIPHIL=SINF (PHIL)

FARGL=COSF (PHIL)#SIDLG¢+SIPHIL®COTHEC#CODLG

CALL DENFN(FARGL ¢ FNVL)

BKVALSHINT® (FNVS®STIPHIS+S4+S2+FNVL®*SIPHIL) /73,
BKVAL®BKVAL®,9549296586

RETURN

END
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SUBROUTINE DPTSCP( PRMAG)
DIMENSTION CLSLAT(21)
loDPTSAG(Zl)oCLBDS(Zl)oZLAT(Zl)
24NOSTAR (16000} s WMAG (16000) 18X {16000) +6Y(16000) 62 (16000!
COMMON DPTSAGs INDAGsCLBDS+ZLAT
COMMON/Y1/ GX
COMMON/2/ GY,G2
COMMON/3/ WMAG,NOSTAR
INDAG= STARTING INDEX OF LIST PRMAG=MAGNITUDE FOR NEW LIST
TI=ETIMEF(TTT)
PRINT 37,INDAGsWMAG (INDAG) yNOSTAR (INDAG)
37 FORMAT (2X922HINITIAL INDEX AND MAGO I7+FBe29)10X+THSTAR NO 110)
DO 9 [=)],21
9 CLSLAT(]I)=0
_ IF (PRMAG=74+5) 40+40912
12 PRMAG=7,5
40 IF (WMAG(INDAG)=PRMAG) 10»10+60
10 SIGNE=]
70 INDAG=INDAG+]
IF(INDAG=15174) 42442041
4] INDAG=INDAGw}
GO TO 80
42 IF(WMAG(INDAG)=PRMAG) 50¢50,41
30 INDAG=INDAG=)
1F (WMAG ( INDAG) ~PRMAG) R0+80,:50
60 SIGN=1
50 WMAGIOEEXPF (,92103403720%(10,=WMAG(INDAG)))
ABGZ=ARSF (GZ (INDAG))
DO S00 k=1lsl0
IF(CLBDS (K) =ABGZ) 500+6009600
S00 CONTINUE
k=11
600 I1F(CLBDS(1)=GZ(INDAG)) 700+8009800
T0n LATC=K+10
CLSLAT (LATC)=CLSLAT(LATC) *SIGN®WMAG} 0
GO TO 400
800 LATC=12eK
CLSLAT(LATC)=CLSLAT(LATC) *SIGN®*WMAG] 0
400 LTEST=)
IF(SIGN) T0,70+30
80 SDINSP=41252,961253
NO 90 JI=2s1)
FATRAT=2,/((CLBDS(I)=CLBDS(I=1))#SDINSP )
MGM=I¢+]10 )
DPTSAG (MGM) =F ATRAT®CLSLAT (MGM) ¢DPTSAG (MGM)
MGMa=Je¢12
90 DPTSAG (MGM) =FATRAT#CLSLAT (MGM) +DPTSAG (MGM)
DPTSAG(}1)=CLSLAT(1}1)/(CLBDS(])#SDINSP) +DPTSAG(1])
PRINT 3R+ INDAGyWMAG (INDAG) s NOSTAR (INDAG)
38 FORMAT {2Xs23HTERMINAL INDEX AND MAGp I7¢FBe2910X,THSTAR NO 110}
PRINT 39,DPTSAG
39 FORMAT (E20.+10)
TT=TIMEF(TTT)
TTTIMERTT=T]
PRINT 36, TTTIME
36 FORMAT (2X930HDPTSCP SUB = TIME IN MIL SEC = E17.9)
RETURN
END
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SUBROUTTIMNF DENFN(ZAROGVALUE)
DIMENSTION DUMWY (2)

1.DPTSAG(?1) 9CLRDS{21) 9ZLAT (21}

2 NOSTAR (160007 sWMAG (160000 16X (160001 +6Y (16000) 32 (16000)
COMMON PPTSAGReINDAGSCLRDSZLAT
CUOMMON/Y/Z GX
COMMONY/ 2/ Y 4?7
COMMON/3/ WMAGWNUSTAR
ABZ=ABSF (ZARG)

N0 10 k=1410
TE(CLBNG(K)=AnZ2) 10920420

10 CONTINUE
K=11]

20 TF(CLBDS (1) =ZaRG) 30040440

30 LATF=K+10
GO TO 50

40 1 ATF=12=K

50 TF{LATFel) 60,70+60

60 TF (1LATF=21)R0¢90+80

70 1.AVF=?
0 TO AN

90 L ATF=ZD

80 NUMPTY =LATF=1
NUMPT?  =LATF
NUMPTI =LATF+1

100 X12=2LAT (NUMPT] Y=ZLAT (NUMPT2 )
X13=ZLAT(NUMPTY ) =ZLAT(NUMKFTI )
X23=ZLAT(NUMPT? ) =ZLAT (NUMPTI )
x1=7ARG=7ZLAT (NUMET Y )
XP=/ARGR=ZLAT (NHIMPTD )
X3=7ARRLZLAT (NUMPTY )
VALUESXP2/X12#X3/X13%UPTSAG (NUMPT Y wA]1/X128X3/X23%DP TSAG (NUMPTL
1)+ X1 /X1A#X2/X23*#NPTSALG INUMFTI )
RETURN
ks

SUKROJTINE  CUMNOR (X 9CoFMaFSeV)
veCarHT ((X=FVY) /FS)
C# (VALUF OF CUMe NORMAL WITH MEAN Fu AND SeD. FD)
PXEX
BYS ((PX«FM)/FS)®#,TNT10LETRLLY
Y=AHSF (PY)
N2 (((({(.N00043063IRBY+,0002TES672) #y+e0001B20143)0Y+,0092705272) 8Y
1+.0622R20123) #Y+,0705230784)8Y+),) #8186
FrF=lem]1,4/0
VEoG8 (] ,+ERF) ¢
TF{PY} 20430430
20 v=C=v
30 RETUIRN
END
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SUBROUTINME DIRCOS (RAs DECs Xe Yo 2)
NTH=,0174532925820

FAD=ROA#DT K

eECP=DEC#DTR

CDEC=COSF (LECD)

XT=C0OSF (KaD) #CDEC

YT=SINF (kaD)&#CDEC

7T=SINF(PECD)

X = =4207911694XT + «97B14T608#YT

Y = =4480Q2124R#XT = «00T60B638YT = _RB294759#2T

7 = =aRAAECHINTHXT « o 1P3ISTSIINYT ¢ ,409647156%277

RETURN

END

SCOPE -

19,73 164R?  JR,R9 21,23 24.03 29.03 39.11 58.99 91,39 121.13 146,2)
116,52 88,19 56,55 3R,42 28,76 23,49 21,07 1hen9 H. B2 16.A3 1179

10. =10, 490 40

S0, =10, 20 46l

150, =10, 49 70

190, -10. 129 102

270, =)0, 74 176
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STELLAR BACKGROUND RADIATION

3. Computation of Surface Integral ub(Gs)

For integration purposes Vv, is assumed to be quadratic, i.e.,

b
2
vb(z) =Pt PyZ . Also vb(-z) = vb(z).
The method used is to rotate the xyz system about the x-axis through

an angle . This can be accomplished by the transformation

x'! 1 0 0 X
y'l = 0 cos ¢ sin « y
z'! 0 -sin o cos o z
L}
z

If we parametrically represent this surface by

/ /= S

/
X = ¢ cos b \3=YSI.)19 g=xyI-Y
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STELLAR BACKGROUND RADIATION

then X= X Cos &

Y= X SIiné CoSi X l— X2 Sine

Z= YsSin® Sind \l,_‘..a_ CoS o

Using this representation, we have

T TE TR [aq,zslﬂ [a (2,%) ]1+ [acwr
D e) d(,8) o (v, 8)

= N*
|- *

Thus
/ab/éz,) = S F(xsinG -sina +VI— Y2 Cos ) X dedvyr
Vi-¢2
5
-+ ggF(‘(‘sine- sint — VI- ¢& Cosw) _Y A6 dvy
N - Nt
Ioy
where
,@=§(Y,o)1ms\rsl osesesg
Since

Ysing.sine +\iI-x* Cos«< > o Lo (v,8) c—&
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STELLAR BACKGROUND RADIATION

SSF(TSine»sirm + /- ¢2 Cosa) Y Adbd v
I Ni-c=

_ bs
S % (_p, A+PaYNsSing-sinu "‘P-‘l\]"“"' CoSeL +]>3"(‘asinae Sin

+ P3(1~Y';)CU51=L + p;C V- ¢* sine sin .7_-(.1' 8 dodv
Yimvrz
! 1

pos( L dr Sinot_(l—Cosés)& * dv
3§ x*

1-a®

\ |
+ P, 05 COSt \ vy 4 p Sin.1(Bs-Lsinab )| X3 dr
Ps 5~ >z S =
a
I-a Ni-a®

!
!
YV I—c=d\ +Ps sinax (I-cosés) g‘Cldr

= fran
— P95¢L+PS/A°L<I—C'05'95 (/[—rq NI~ a'——S/n dl—af‘)

T+ R E CosTw &

2 -2,
+P—._95 COS-L'Ja_—a. + Pa s nix -li-(és -Jisin.zés)(/‘a'/f )a.

a 3 . 3.
T Ps s Cos .¢-%a. +Fssln.zd-(I-Cosgs)':i-(’—(l—ai) 3)
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STELLAR BACKGROUND RADIATION

&

The second integral is not quite so . easy. First, we determine

where A = Y‘Sin6~$in,L.—\SI-—v"- COS oL is positive.
N$in8 -Sin = NI-v& QoS >0

v o> \/[_|+'6a.nao4. sinee ] = u3e).

A>0
Vi—a2 Ll > NIV NNNNNNN] r=i /«/Honza sin20
cos @

|

|

|

|

|

:

6,  \ 6

® is the value of O which satisfies

! = l-a®

a
I+ tan"oL sin® o

8, = Sln_l(CofoL- a \1—/_—;;)

This integral can be broken up into several cases.

Case I: 6054_7/\)1_—0.—3' ?CDSJ_ <\l —a 2 )QSSQo?
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Case II:

In Case 1

SSF(vsm 6-Sivnat.'—\ll— 2 Cosae) Y dody
5 1= ¢

ds u(8) |
= & KF(-A)'L_O“’ -+ gl‘-'m) 'S de | de
o ( Via> - ate>y N>

Note that

F(AY = P +P7_‘('sin 6 Sine — F_,_\S l- & Cos +F5Y'asinaé Sin'zot
P-5
T p,(-v*)cos’e =~ p,x Vice® Sin & sin 2s
F(-A) = p,— R Csine-sine +p,NT-¢2 Cos« +p,X5ins Sin'et

*Ps (1-v?) cos™w —Psv\h-r-" Siné sin 2L,

Let
I,065)= Sg?n zdrde
5 -
T,(65) = gg& Siné sine X2 4 4,
S Ni-cz
I{os) - SSPZ CosS - dv d6
Jex
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STELLAR BACKGROUND RADIATION

Iq(és) = gg?a S;naé SinloL . \"3 ot\v-de

5 N
-1——5(95) = gg?—s COS:-,L. . \h_.(-a. dd b
&
16(95) = gng Sind Sinaw -Crdvdé
&
I,065) gg Posing.sine - X2 devde
Ni— e
B’(gs) l—x
Ig(gs) = g Pz Cose- Y- Avrd @
where B1e)

,9//9,) = ?(w,e)l M) ST osasész

Thus, in Case I

6
/46(9,) =2 T, +(L,+T, +I4-I.)

e=1/

Os A (6) 6¢ wulé)
_S gPa_ SiNn®.Sine -2 Ardé-’-& SECOS-L\".ATO(Q
e N 1= @ P-v® o l-a*
2 Sin®Sind - vdée — CoSe -
fo] ucé) —2 ) SP&. OS5k (‘d\“o(@
wee)
&
_[Z,- L. +1,+T,+ 1,1, +~ (-1, +T,)
=
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STELLAR BACKGROUND RADIATION
s |
+.7.S‘ P Sing-sine. X2 dvde - -‘lg S‘Pa_C.OSaL- cdvrdo.
o e \h-rﬂ- o ulé)
where the I's are all evaluated at 9
In Case II
gS F¢A)Y - \I"'—_ dvde
o
A} | —
- g""g“w) 6o |
F(-A) X dvde +§
(-] \J_’a. \]‘_‘_a‘ F(R’) Jvde
{-a © Wi \5\—r=
+ ¢
g FA) Y dvdé
b0 l—a® ‘_rﬂ-

=T, (6) + Ly(6,) + Ts(60) —I_(6,)

—Ia_/éO) +.2I7/00)
+ T 5(60) - 2T,/6,)

+ [T, 65) -, (8,)1 - LI (65)-T,06)]+ [T, (65) - T,06)]

+ [I“{ {05) —'L'-I- /90 j + EIS(GS) —Ig(oo)]_ [I‘(o_s) -I4/oo)}

= I, (65) +T 4(8s) +Tg(05) —I,(65)
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~I.(65) + 2T,(8,)

+T3(05) — 2Lg(6,)

Thus, for Case Il

/Z{b(as) = 2L T, (8) + T,(85) + T, (85) + Tslos) + T, 1, -z, /8)]

Integrals

Il (95) = P, Osa = P és Sfﬂ¢
L,r0) = PoSine (1 -Cos &5 Y(% + YVaNT-a2 - ;_LL- s, ! -az )

=]5a_ sine (1-cos &5 ) (4 Sinad ""f}(’)

I,(65) =p,6scosx -DL‘.a,:‘ = B és Cos is;n‘?¢
L,(65) = psinfe L (s - L sin2é ) [-a73) a
Is (65) = p, 65 Cos®< a¥3
T, (6) « py sin 2+ (I-Cos 6s (- (1-a2)%) /3
I, (65) = Fa.f«?”' w (- cosbs +-L cos @, 5,77 (urs5)) )
_.’_7. Ccos "« 7;2/)_1(556. Ltanbs ) - L Tan™(cos« cot d, )
+7774}
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STELLAR BACKGROUND RADIATION

Iy (95) = p, Cose QL fes—CO$-<.7—a;/(sec_,4-z‘an 9'5)]

1'7/05) :

6s '
S sine Y2 dvd 6
©  wesy NT—¢2
&

) 2

6

(o]

65

S \
S S/'n&[—f__“'—fa' -'--Fa—‘s:n-"(‘] d 8

uce)

= a
j’ 5755/n9—f-L fane Sin &
[4]

I+ tan s,n%p 2

1
— sine& Sin
d/-ffqn'-lcsma

s -
siné [TQ, +uINCy3ey — & Sia '(u/@))] od 6
-2

/

= -~ % Cos & — -5 Cot ot COSot 7;n'l(5ec../. lan bs )

—_ -/ {
é ase < Tan ( rs

ec < £anos ) )

t 4 cos b Siallarar) + i esc <.

Ly (85):
8¢ | Qs
g SYdr'dé = g [-—’5_--
A

o Ure)

€ /{
2 | +tan’usiie

] -

- i[gs —~Cos o —/_a-n-l(se_c.(. i‘aﬂas)]
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STELLAR BACKGROUND RADIATION

4. Background Tables and Coordinate Conversions

Table 1 gives the total integrated starlight for stars of sixth magnitude
and weaker.* Photographic magnitude is used throughout. The entries are in
terms of tenth magnitude stars per square degree. The coordinates are old
galactic coordinates.** A coordinate conversion graph follows the background
table.

The following indicates the relations between the celestial and galactic

spheres.

F{ North Celestial Bole

Galactic Equator

North Galactic Pole

Zero Galactic
Right Ascension

Je

Xy

Celestial Equator

Zero Celestial
Right Ascension

* Megill, L. R. and F. E. Roach (1961).

sk See Allen (1963), p. 17.
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STELLAR BACKGROUND RADIATION

TABLE 1
INTEGRATED STARLIGHT

CI\bI 00 05 10 15 20 30 40 50 60 70 80

000| 99 62 54 55 51 40 28 22 19 17 16
0l0| 102 65 60 68 62 43 30 22 19 17 15
020 117 74 68 81 72 45 30 22 19 16 15
030 144 89 77 85 74 44 30 23 19 16 15
0401 171 106 82 78 66 42 30 22 18 16 15
050 187 114 80 65 55 38 29 22 18 16 15

060} 174 106 70 53 45 34 27 22 18 16 15
0701 141 87 58 44 38 31 26 21 18 16 15
080 106 65 47 39 35 29 25 21 18 16 15
090 80 49 39 38 35 28 24 21 18 16 15
100 66 41 35 38 36 28 24 21 18 16 15

110 62 38 34 40 37 28 24 21 18 17 16
120 68 42 37 41 38 28 23 20 18 17 16
130 83 52 43 42 38 29 23 20 18 17 15
140 102 69 52 43 37 29 23 19 17 16 15
150) 125 90 62 45 38 30 23 18 16 15 15

160 | 140 107 72 49 41 31 22 18 16 15 14
170| 147 112 78 56 45 31 22 17 15 14 14
180 147 105 80 64 51 32 22 17 15 14 14
1901 147 98 78 70 55 33 22 17 15 14 14
200| 159 97 76 71 56 33 23 18 16 15 15

210 189 106 78 66 53 33 23 19 17 le 15
220 239 127 82 60 48 33 24 20 17 17 16
230 290 152 89 54 43 32 25 20 18 17 16
240 321 176 98 53 42 33 26 21 19 17 16
250| 323 191 109 58 45 35 28 22 19 17 15

260} 306 191 118 68 52 38 29 23 19 17 15
270| 282 182 124 82 61 40 30 24 19 16 15
280 263 170 125 94 69 41 30 24 19 16 15
290 | 254 158 120 96 70 40 29 24 20 17 15
300f 251 148 109 86 62 37 29 24 20 17 16

310§ 235 134 94 70 52 34 27 23 20 17 16
320 206 116 79 55 43 33 27 23 20 18 16
330 167 94 65 45 38 32 26 22 20 18 16
340 132 76 56 43 38 34 26 22 19 18 16
3501 109 66 52 46 42 36 27 22 19 17 16

3
I

galactic right ascension

o
I

galactic declination
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STELLAR BACKGROUND RADIATION

TABLE 1 (cont.)

£ﬁ\bI 02  -05 -10 -15 -20 -30 <40 -50 -60 -70  ~80
000 | 111 95 81 77 65 42 31 25 21 19 18
010 | 114 95 79 70 56 38 29 24 21 19 18
020 | 129 106 83 67 50 34 27 24 21 20 18
030 | 154 122 91 68 47 32 26 23 21 20 19
040 | 179 136 99 72 48 32 25 21 20 20 18
050 | 190 140 102 76 52 33 25 20 19 19 18
060 | 177 131 98 79 58 36 25 20 18 19 18
070 | 147 113 90 79 62 39 26 19 18 18 18
080 | 115 95 80 7% 60 40 27 19 17 17 17
090 91 80 70 66 54 38 27 20 17 16 17
100 76 70 62 55 45 34 26 20 17 16 17
110 72 6 55 46 36 30 25 20 17 16 17
120 76 63 50 39 30 2 23 20 18 16 17
130 86 63 46 35 27 24 22 20 18 17 17
140 99 65 " 35 27 23 21 19 18 17 17
150 | 111 67 ld 3% 30 25 22 19 18 17 17
60 | 122 71 %% 1 36 28 23 19 18 17 17
170 | 130 80 54 50 4 32 25 20 18 17 17
180 | 127 92 66 62 55 37 27 21 18 17 17
190 | 148 113 85 76 64 4O 29 22 18 17 17
200 | 168 139 110 91 68 42 29 23 19 17 17
310 | 206 169 131 59 67 41 29 23 19 18 18
220 | 255 197 144  101. 63 38 28 22 19 18 18
230 | 303 214 142 94 57 35 26 21 20 19 18
240 | 323 208 128 83 52 33 25 21 20 19 18
250 | 308 187 108 73 48 32 25 21 20 19 18
560 | 281 168 0% 66 45 31 25 22 21 19 18
270 | 259 161 91 65 44 32 27 24 21 19 18
280 | 251 168 100 69 46 33 28 25 22 19 18
290 | 253 186 119 79 49 34 30 27 22 19 18
300 | 258 203 141 92 56 37 32 27 22 19 18
370 | 251 205 153 104 63 40 33 27 22 19 18
320 | 228 186 148 110 72 43 33 27 21 19 18
330 | 185 155 129 108 78 46 33 26 21 18 18
340 | 147 124 108 99 79 47 33 25 20 18 18
350 | 122 104 91 87 73 4 32 25 20 19 18

el - galactic right ascension

bI = galactic declination
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F. Statistical Model for Spatial Noise

In this subsection, F, we describe a statistical model of the weak star
background for the third operating situation. The weak stars are closely
spaced in time, and their detections are statistically dependent. 1In the
next subsection, G, we evaluate the spatial noise power, and describe the
characteristics of two typical filters.

A weak star background is used in the following discussion; the very
weak stars are not combined to form a homogeneous component. The weak star
images are assumed to be randomly distributed across the reticle with a homo-
geneous, two-dimensional Poisson distribution. The gross variation in star
density between the galactic pole and equator can be neglected in the following.
Hence, the times at which weak stars enter the slit form a stationary Poisson
process. Let vy denote the average rate of star transits, and tl’ t2’ t3, oo
denote the times when weak stars are in the center of the slit. Ilet Ij(k) Ak
be the amount of radiation from the jth star in the wavelength interval
(A, A + A\) entering a unit area of the optical aperture. Assume Ij(x) is
expressed in photons per second. The variation of Ij(K) between successive
stars, and the rate v, depend on the region of the sky one is scanning.

The optical system produces an aberrated image. Assume it is Gaussian
in shape; i.e., the radiation per unit area on the reticle is given by

(XY A :22-
ATKX\ I* ) ex?l_l— xa+ ]

2 o2 2 a2

in the wavelength interval (A, A + A)A), where A is the aperture area, where
T()A) is the transmittance of the optical system for wavelength A, and where

o defines the optical resolution.
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1. Radiation Passed Slit

Let TS be the time required for a star to cross the slit. The radiation
passing the slit at time t from the jth star is AT()\) Ij(X) G(t - tj) A\ in the

wavelength interval (A, A + A\), where

G = %(%*%) - t-L )
¢ X7

éE(ﬁ) = J%ﬁ; S e dx

- 0o

With the star centered in the slit, eighty percent of the star radiation passes
the slit when TS/Z = 1.280. It follows that the total background radiation

passing the slit at time T is
I, (6,242 = AT JE_.'I.;(MG({:-Q) + (AT aR

in the wavelength interval (A, A + AX). The constant term I, (A) is introduced
for generality. One may make observations from the earth's surface; in which
case I, (A\) is the airglow radiation. Also if one is scanning near the ecliptic,
I, (A) can include zodiacal radiation. In general I, (A) will depend on the

optical aperture and field of view.

2. Filter Output
The radiation Ib(t, A) on the photocathode produces electron emissions.

These emissions form a non-stationary Poisson process with an instantaneous

(=

Q) _Lb({:. 2)d A,

- D

emission rate of
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' *
where Q(A) is the quantum efficiency at wavelength A. Substituting

for Ib(t,K) the rate b.ecomes
) = AZTGO-) + IT

* *
where Ij and I, are the effective intensities.

IJ.* = f:oT(x) L) Q(2) da
I, =£wT(1) LA da

Let T1s Tos eeTi denote the times at which emissions occur.

Corresponding to the k-th emission one obtains a pulse at the output of

the photomultiplier akp(t—ﬁ), where

P('t) = 0 for t<o

and
oo

f p(tY dt =1 .

o

The pulse amplitude ak varies between pulses since the electron multiplication

is random.

Assume the filter has an impulge response w(t), with w(t) = 0 for

For the intensity and spectral characteristics of stellar radiation,
these assumptions are physically reasonable. The characteristics of

photo-electric emissions are discussed by L. Mandel (1958) pp. 1037-
1047 and (1959), pp. 233-243.
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t < 0., Then the output of the filter is

o

X(é) =Z Ay Sp(t-ﬁ;-’r') W) T’
K (2]

where the Tk's form a non-stationary Poisson process with an instantaneous
rate (t). The photomultiplier dark current will be omitted in the following

discussion since the objective is to describe stellar background noise. The

dark current is simply additive since the filter in linear.
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G. Spatial Noise Power

At time t the uncertainty in X(t) results from photon noise. The instan-

taneous 'dc level" is expected value X(t): viz.,*
ol \- ]
Xy =a| e SP(f—I L) W(T) T AT
— * = ” =
aA):,_'IS ge("”-tj) SP(-&—-‘T"-‘T") WY LT AT
+ 5z C
o I, SW(‘T")O(T/

The uncertainty in X(t) about X(t) corresponds to the photon noise. The
variance of X(t) is the power in the photon noise at time t, call it

P_(t). 1It is

pn
O <
AR CL"'AZI g 6 (T ¢ )[SF&_P”_q*')w(n*')dﬁ"Jd‘r”
—0Ce — Ge
S [gp(t m:_p)wc"’)df*] a7
* In the following discussion extensive use is made of relationships

developed for Poisson processes by E. Parzen (1962), Chapter 4.
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Since Ppn(t) changes with time, X(t) is not stationary, even in the wide
sense. It is natural to measure the photon noise power by the time
average of Ppn(t): viz.,
' T
<P,,,,(T,)>— [im ——-j Ppn(ﬂ at
T

Tos 2T

In practical cases, the above limit converges in mean square to the
expected value of Ppn(t) with respect to the ensemble generated by the

¥*

ot '
tJ s and Ij s. Hence

(B, = EATT, + T | ot te) ao

P

To obtain this result one must use the identity

G(t) dt = Ts

-_— 0

~

Note that vIg is the expected number of stars in the slit. The double

integral in <Ppn(t)> can be written in a simpler form;

.ij_jP””“T') w (') d'r']zoh,n _

[ 1@ wn® df,

- Ol
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where P(f) and W/ (f) are the Fourier transforms of p(t) and w(t). 1In

cases of interest, the band width of the filter determinaes tha value of

this integral since the band width corresponding tolAP(f)I is much greater.
The spatial noise is the variation of f(-t_). as a function of time.

The (¢ component of the spatial noise is simply the time average of

X () ¢ wviz.,

.
(X)) = lim —‘-f X dt .

T__,oo 2T ‘T

In practical cases, the above limit converges in mean square to the
expected value of X(t) with respect to the ensemble generated by the

3
'I‘j's and I. 's. Hence
J oo

(XY = a[ATVT; +T,][ w® d~

The ac component of the-spatial noise is the variation of X(t) about

the de¢ level (X(t)). The power in g¢ component is therefove

(XD - KDY =

T o=

.
lim L [T (XD -<XAP)® 4t -
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As before, the limit converges in mean square to the ensemble averaza

which is the variance of X(t) . Therefore,

UKD —(Xap)F) =

o oo so 2
F2A° :ITZVJ L(G('r"—*r”’)j po(t-T=r") w(fr')A/r'Jfr’ild“r

=522 T 13O (e WP df

Wherez;(f) is the Fourier transform of G(t).

The average power in the filter output is defined as the time
average of Xz(t). Applying the ergodic theorem, one can show that tha
average power <X2(t)> is equal to the sum of the average power in the

photon noise and the power in the spatial noise, i.e.,

XEe) = (ATVT, +T) 1eer P 1w o) 2 ds

s ATV IO 1@ W2 df

v S[AT VT, +1, b D’ w(T) clfrr
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The first term corresponds to the photon noise. The second term corresponds
to the ac component of the spatial noise. It is the only term that is

dependent on the optical resolution. The third term corresponds to the

dc component of the spatial noise. Note that the integrand ‘Q('F) ‘2 ‘M/('F)‘Z

corresponds to the power spectrum of the photon noise, and the integrand

1
L

S IeAIE A G iqv‘\/({) { 2 corresponds to the power spectrum of the

1O (1Y 151@(1))

spatial noise.

One can evaluate the Fourier transform b({) explicitly. 1In

G.3, |)j('f)‘2 is shown to be
L sief(nfT) expfu o]
e

Also, in cases of interest \Q(‘F)\ is constant relative to

%
and lW('F)\ . Neglecting I, c, one can now rewrite the average power as

(X2 = "ZAT’vTSUwWZ(t\ dt
o> 44}.2_{‘1 2
L AT, &° T”"‘-[ L___si*@THe °
az 'T_' _"’(4FT;{7

Jw (R dF
+ AT VT ([ W) dy)?]

2 -

Q
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The power in the spatial noise is monotone increasing function of optical
resolution. To illustrate the relative magnitude of various noise
components, the terms in the brackets will be evaluated for typical
systems.
The ratio 52/02 depends on the photomultiplier; a nominal
%
value is 2/3.

The intensity ratio 2T and the average intensity I* yTg can
be evaluated directly using pravious results developad by Farrell and
Zimmerman. ** Assume one is interested in stars with photographic
magnitudes M, and smaller. Then the background consists of stars with

magnitudes greater than M,. 1In the following discussion a mean galactic

background is used. Ona can show that

|

by

2 _ 3.a8x10°T.Q, 1~ 3173 M, +3.53)
I=&(.173M, ~ 1.80)

=

where T, is the nominal optical transmittance and Q, is the nominal
quantum efficiency, with the aperture area expressed in square inches.
This ratio is graphed in Figure 15with T, = .5 and Q, = .l. The average

intensity I* vIg is

3.85<10*[1 - 2(173M,-1.80)] A" T, Q,

whete A' is the slit area in square degrees, with the aparture

* R. F. Tusting, Q. Z. Kerms, H. K. Knudsen, (1962), pp. 118-123.

%% E. J. Farrell and C. D. Zimmerman, (1965), Appendix B.
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area expressed in square inches. This expression is graphed in Figurel5
with T, = .5, A' = 1, and Q= .1.
There are several possible filters that can be used. 1In the following

sections, two filters will be considered in detail. The first is a

simple low-pass filter, with an exponential impulse response. The

second is a matchad filter.

1. Spatial Noise With a Simple Low Pass Filter

Assume the filter has an expoanential impulse response:

W, €.t/¢é
wi(t) = ° t>0

o) 1 <o.

where T, is the time constant. The transfer function is

lw (£)1% = wZf*®
I+ (2T f1T)?

Further, the integral of wz(t) and the square of the integral of w(t) can

be evaluated directly. Namely

/ TWAD dt= wE /2

eo 2
fwmoat = W21’
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The expression for average power <X2(t)> reduces to

(X2 = AT VT, (w2

[~ .

2
J1+ AT, L L2 [ (sindTef P o™ o™ an df
at I* J Ts 1+ (o {y
-2 T
+ 2 d A"V, ’lvc-]
a2 J

Note that the second term is the ratio of the spatigl noise power to the

photon noise power.

The integral in the second term of (Xz(‘t)> can not
be evaluated in closed form. It can be rewritten as

Ts -
_4_(1;)2 sin( "z:; ) (‘T/’“J ve, dv
n vV

- {+v2

which only depends on the ratio of image diameter to slit width, and

the ratio of the star transit time to the filter time constant The

image diameter is rdefined as the slit width that passes eighty percent of

the image radiation. The diameter D equals 2.56 0°, The following function

is graphed in Figures 16 and 17.
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QO
, 2
F(O(,@) =4 sin xv/2 exp-oﬂaﬁz\lz ‘ dv
T2 Y, (2.5¢)2 1 1+V?

where o corresponds to TS/Tc and B corresponds to D/TS.
The "efficiency'" of the filter can be measured by the ratio of rms

output ripple to de level. This ratio is

Vs
2 *2 2
1+ & Lo AT, F(s ,_D_>
£ = at I” Te  Ts
-2 g lr>
[2 AT VT
a

To illustrate the effect of increasing the time constant 7., the ripple
ratio is evaluated for a particular system using different time constants.
Assume Efi&;i-is 2/3; aperture area A is 20 square inches; limiting
magnitude M, is 3; transit time Ty is 5.6x10'5 seconds; th2 image
diameter is equal to the slit width; slit area is .7 square degrees;
optical efficiency is .5; quantum efficiency is .1. The ratio of rms
ripple to d¢ level is graphed in Figure 18. Note that the star signai
will be significantly distorted when the time constant is greater than

the star transit time Ts’
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2. Spatial Noise With a Matched Filter

The signal from a bright star is described by G(t). Hence a matched
filter is one which has an impulse response proportional G(t). 1In many cases
of interest, G(t) can be approximated by a Gaussian density. In addition,
it is mathematically convenient to use a Gaussian density for the impulse

response, Set
A

(t)= w c_ﬁ(t/h)
wW (-]

where w, and T, are the filter parameters. The transfer function is

2 L, —arfr)
"W(F)l = arw, T, e

The integral of wz(t) and the square of the integral of w(t) can be evaluated

directly. Namely,

wz(t) At = "J'T—T— TC Woa.
o ped

[ w(&)étl = .:21r’t':' W:L
) o0

The integral involved in the ac component of the spatial noise can also

be evaluated, namely,
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S S|n’ﬂ‘7;$].z _arigs? 2
mT & VWY df
= 2n Wo o S[Sm ¥ l -4”‘2-‘:3(0.;4!':'&)
T8 o £

H

TRW, ITC_EFE( Ts )":'5_

+ H\ffﬁ[ﬂt

Hence, the noise power is

(XS = \w @EAT v T2 T2 Wi

§1+4\ITFA|C a I""1
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To illustrate the effect of increasing the time constant T the

c’
ripple ratio E is evaluated with the specific set of system parameters
used above, for different time constant values T.. The ratio is graphed

in Figure 6. The ripple is smaller with the matched filter since it

has a smaller band width for the same time constant.

3. Special Derivations

The Fourier transform of G(t) is

Qs

& = J' G(t) e ‘e {td‘t :—j GA) cos (amtt) 4t

Substituting for G(t) and integrating by parts, one obtains

b(ﬂ=l “@

.;-r’—) cos(zmft) 41

qlc-*

j (jl -Is_) cos(anft) di

a

[irm {[@(g+gs_) sin(chﬂ]a

21»{ A—»o0 a o

f¢( L) sin(@eft) dt ~[p(4 - T sin(enit]

5%

J' ¢( j’i) sin(anft) dt }

g

= ch a_’w{j ¢(t Ts) sin(a2nft) dt

..f ¢(;,_+Z;sr) sin(aof dt}

Ly |
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With a linear change of variables and application of the trigomometric
identity for the sum of two angles, one obtains

alac-Ts/a0"
@.('FX=—'—{—_.-“FH gf &b (x) Sinaﬂ{:(cx+%)dx

~aly - Ts/o
ale + T /20
- B(x) sin anf(ox -~ L) dx
-d/g + Ts [2a
dfo -Tg /20

= _’“{J #(x) sin(arfo x) cos($T.) dx
Eﬂ{: a -dlg -Ts/20 ’
afe -Ts/20-
+ P(x) cos(amfox) sin(MfTg) dx
~d/g ~ Ts/a¢

Al +Tg /o

~ o) sin(Zefex) cos(mfT) dx

~dlo+ Ts/20

a/e- T/
+f ;(a;) cos(amfax) sin(m{T,) dx

~ala +‘_T;4G20~

= L sin (m£7T5) f‘:p(x) cos(2ufo X) d x

4+ ) e
2
_ 1 sin(edTy e 2t

e

This is the required result.
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IV, INFORMATION CONTENT OF PHOTOELECTRIC STAR IMAGES

Celestial navigation sensors and certain types of astronomical techniques
use photoelectric imaging of star fields. In particular, navigation sensors
use image tubes or special phototubes, others use moving slits with a simple
photomultiplier.* Astronomical techniques using image orthicons and image
converters are currently being developed, as described by Hiltner (1960). 1In
these applications, stars must be detected against a noise background. In
most applications, one must also accurately locate the star image in the
field of view and estimate its intensity.

The sensor introduces randomness at three different points in the image
sensing, see Figure 1., The phototube has internal noise that limits its infor-
mation capacity and detecting ability.** The scanning process also has certain

JORURRN
WRw

intrinsic limitations. Third, the photon noise, optical aberrations, and

* Lillestrand and Carroll (1961) and Kenimer and Walsh (1964),
ok Jones (1960 a, b)

&% Beall (1964) and Farrell and Zimmerman (1965).
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stellar background limit the information one can extract from the photo-
electric star image. This third source of randomness is the primary concern
in the following discussion. The basic problem can be stated as follows.
Starlight is focused on a photoemissive surface to form an aberrated image.
For a fixed exposure time one obtains a charge distribution. The distri-
bution is different for each exposure because of the quantum nature of the
emissions. In addition, the stellar background produces an overall charge.
The basic problem is to detect the presence of a star and estimate its
position and intensity. The objective of this section is to determine the
detectability of such two dimensional photoelectric images, and to determine
the limiting accuracy of position and intensity estimation. These limits
represent the "information content' of the image and describe the ultimate
capability of any sensor, independent of the phototube and scanning method.
Detection and resolution limits have been discussed previously by Helstrom
(1964). Most of his results on detection are derived for a signal-to-
noise ratio much less than one. This is not the case in most stellar appli-
cations. Also, he assumes the observation interval is sufficiently long to
obtain a large number of emissions. In stellar applications of interest,
one does not have a large number of counts. In the following discussion,
both large and small signal-to-noise ratios are considered; and the average
number of counts is not restricted. Helstrom briefly describes accuracy
limits of parameter estimation for a large signal-to-noise ratio. In the

following discussion of estimation, the signal-to-noise ratio is not restricted.
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Preliminary results on the information content of quantized random
surfaces have been developed by Swerling (1962). His objective is to determine
the number of bits required to describe a random surface. Extending this
analysis, one could obtain a second bound on the limiting accuracy of position
and intensity estimation.

The basic statistical models used in this section are presented in
Subsection A. Detectability is discussed in Subsection B; the accuracy limits
of estimation are developed in Subsection C. A numerical example is given in
Subsection D. The results are developed with star images in mind; nevertheless,

several of the basic results can be applied to general images and background.
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A. Radiation Model

Before discussing the information content of photoelectric images, it is
necessary to select a statistical model for the radiation. Let V denote the
region in the focal plane corresponding to the field of view, see Figure 2,
Consider a particular star image in the field of view, with coordinates
(%5, ¥o)+» Let XS denote the intensity of the star radiation entering the
optical system. The intensity XS is expressed in photons per second (relative
to the frequency at which the sensor has peak sensitivity). The star image |
can be described by an energy density function GS(x, y): vix., the energy

falling in the small rectangle (x, x + Ax) (y, ¥y + Ay) for a period T is
A6 Gs(x-xo ,y—yo\ Ax Ay

where ¢, is the optical efficiency.

The density Gs(x, y) is normalized so that

f[GS(x,y\ dxdy =|
v

Hence, GS describes the optical aberrations.

The "background" is all radiation entering the optical system that does
not emanate from the star being considered. In most cases, the background
consists of "randomly positioned" stars which are much weaker than the star
being considered. Let Xb denote the intensity of the background radiation
entering the optical system. The intensity kb is expressed in photons per
second (relative to the frequency at which the'sensor has its peak sensitivity).

The background image can be described by an energy density function
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G, (x, ¥): viz., the-energyrfalling_in a small reéiéﬁgie (x, x + Ax)

(v, vy + Ay) for a period T is
7\\’60 T G—b(x,\/3 Ax Dy

The density Gb(x, y) is normalized so that

J[ety) dxdy =1

Y
A photoemissive surface is placed at the focal plane. Let eq be the

quantum efficiency, i.e., number of electrons emitted per incident photon.*
The statistical model of the photoelectric emissions over the field of view
is defined by the following assumptions:

(i) the number of photoelectric emissions from disjoint regions

are statistically independent
(ii) the number of photoelectric emissions in T seconds from a

Fata
T

region R is a Poisson random variable with mean

60 Eq-r;jfk:xstsk(x-'xa Qy'ygy'+ ZRBC;L(XQVX] clx <Jy
R

* In practice, the overall efficiency ¢, € must be corrected for spectral
characteristics of the optical system, tfe spectral response of the
sensor, and the stellar spectrum.

%% For the intensity and spectral characteristics of stellar radiation,

these assumptions are physically reasonable. The characteristics of
photo-electric emissions are discussed by L. Mandel (1958, 1959).
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The mean number of photoelectric emissions over the entire field of view is

——

N = €€ [7\5+AB]T

for a period of T seconds.

To determine the "information content' of the star image, assume the
position of each photoelectrie emission can be measured. Let N denote the
number of emissions in the period (0, T); and let (Xl’ Yl)’ x,, Y,)---
denote the positions of the first, second, --- photoemission in period
(0, T). See Figure 2, One can determine the joint probability density
function of (Xl, Yl)---(XN, YN) conditional on obtaining N photoemissions.
Consider the "small" rectangles defined by

Ty (Xl’ X

+ , + A
Nﬁ)(yl y v4)

1 1

Ty 5 Ry ¥y F8%) (5 ¥, + by)

r ; (x x + Ax s + A .
N ( o 5N N) (yN . yN)

Let P denote probability of obtaining N photoemissions, and let p_  denote
J

the probability of obtaining one photoemission in ~ . Let p, be the prob-
- J

ability of obtaining no emissions outside of the N rectangles.

I N
1 -XI P

N J':O

Then

is the probability of obtaining exactly N photoemissions with the j
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Hence, the joint density function

emission in rj during the ﬁeriod (0, T)
of (X., Y.)---(X_ Y ) conditional on obtaining N photoemissions is

A
lim {_N!
bxk*o
A\/k—oo PN

N
1, P
ff AX AAyJ

J=1

o,
Further, p = p e 1 where

= éoé Tf[[} {x—xa,y.—\/) + ‘ALGL,(X’YYJ d x A\/

and PN = (:LZF e'N
Then
| N
W’ J=0 PJ — J];'—O /L(J
—\N A
Since
I [Ax-jby ] = &6 T[AG(x-xoy- %) + AGlx ’yjﬂ
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the joint density of (x_, y )'s is
i’ Ti

N
-FN (Xl’\/j )”’)XM-‘\/N\ = —”— 1565()(.‘-)(0))’_3—)’03 + —Afb(x., ’\/_\)
J=1 A + Ay

Note that the density is independent of the duration of the observation.
The position coordinates can be interpreted as N independent, identically

random variables with a density function

RSGS(X—)(")y—yo\ + leb(XJY)
15+1b

th
Also the distribution of the i emission and the number of emissions N

are independent random variables, provided N > i.

For a given "image" (x_, yl), (XZ’ yz),...(xN, yN), one must decide

1
whether or not a star is present; and if a star is present, estimate its

position (x,, ¥,) and intensity XS. The background intensity Kb Gb(x, v)

is assumed to be known near the star image. In most cases of interest

Kb Gb(x, y) 1is small compared to KS. Also Gb(x, y) is assumed to be rela-

tively constant near the star image. Using these assumptions, detectability

is discussed in the next section.

Iv-10
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B. Detectability

Detectability of signals in noise has been studied extensively for
simple time dependent signals, such as radar returns. These problems are
essentially one dimensional. On the other hand, detection of star images
in a noisé background is essentially a two dimensional problem. Spatial
filters can be used to detect two dimensional images similar to the way in
which temperal filters are used to detect one dimensional signals. ZLugt (1964)
describes a technique for image detection which is intrinsically two-
dimensional. A spatial filter is used that maximizes the output signal-
to-noise ratio. Montgomery and Broome (1962) have used a similar technique based
on sampling data from the image. In particular, the image is sampled at
regular intervals over the field of view. If the spacing of the sampling
points is comparable to the optical resolution, the image is accurately
represented by the sampled values; detection is based on the sampled values.
These two detection techniques are developed with bright images in mind.
The following results are based on individual photoelectric emissions, and
thus represent the detection limits for strong as well as weak stars. To
determine the detectability of a star image the position and intensity of
the star are assumed to be known (when the star is present), say (x,, y,)

and Xl. Later this restriction is removed.

Iv-11
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Detection is basically a statistical problem of testing the hypothesis
that XS = 0 as opposed to ks = kl. There are two types of errors: Type I--
a star is 'detected'" when no star is present, Type II--a star is not detected
when a star is present. In practice, most false star detections can be
eliminated by comparison to stored star charts. On the other hand, if a
star is missed, the system accuracy is reduced; and it may be impossible
to obtain the required results. Hence, the goal is to select a detection
method that minimizes the probability of a Type II error for a fixed prob-
ability of a Type I error.

The optimum detection method is based on the likelihood ratio test
statistic J, which is a function of (Xl’ yl), (XZ’ y2),..., (xN, yN),*
1f J is larger than a specified constant CP, a star is said to be present.
If 7 1is less than C , no star is detected. The constant CP is selected
so that the probability of a Type I error is P. The probability of a Type II

error is then minimized; a proof is given in subsection IV.E.l. The likelihood

ratio is

[.FN (Xu‘/. ALY *\fN\ PN-]KS =

[-FN(X' Vi Xy .»\/N\ PN]XS: o

* Likelihood detection techniques are discussed in detail by L. A. Wainstein
and V. D. Zubakov (1962), Chapter 5.

Iv-12



INFORMATION CONTENT

The corresponding test statistic is

N
j = TT RIGS(Xj-Xo,yj_V\/o\ + -’\bﬁGb(XS)y‘_\\
= Ay, Gulxguy,)

Note that J is independent of the observation duration T, the optical

efficiency ¢, and the quantum efficiency ¢ . A test based on InJ is
equivalent to a test based on ./ . Namely, a star is present if InT  is
greater than In C:p . In this section we will discuss the test based on
J/:- In J , with In CP = C‘; . It is interesting to note that the

/
test statistic / can be expressed in terms of a spatial filter

J':ﬂ hixy) Z 80x-x, y,-y) dx dy ,

where §(x, y) is the Dirac delta function. The impulse response of the

spatial filter is

h(x,y) = |n ;\|G'S(X—X0>V’\/o5 + 4,6 (x,y)
A Gb(x,y)

To determine the threshold Cp and the probability of a Type II error,
it is necessary to use the distribution function of :7I . In general, one
can not determine the distribution function of J/ explicitly. On the other

/ .
hand, the characteristic function of /)] can be evaluated. 1In subsection IV.E.2,

iv-13



e

INFORMATION CONTENT

ota
w

[4
we show that the logarithm of the characteristic function of o is

Ksz As Go(x=Xo,y-y,) + A,Gy(x,y)
/) Ag + 7‘b
[[V8
J[ 2Oty -y + %Gb(x,y)) - 1] dx dy
A Gylx,y)
where A = Kl or 0. The mean and variance of J7l are

EJ = Nﬂ A5 Gslx-%0,y-v) + A,G(x,¥)
Ag + A,

. In [ A, Gs(x—xo,\/—y) + qub(XQ/)] dx dy
A, Gy lx,y)

Var 7' = ’\7]/ (‘/\SGS(X‘Xo)Y‘XQ\ + 2,G(x,y)
-oco AS +-Ab

] AL G (= %o 5 Y- va) + G (x,y) dx dy
A, Gy (x,4)

This characteristic function is very similar to the characteristic

function of a non-stationary temporial Poisson process. See E. Parzen
(1962), p. 156.
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One can approximate the distribution of J7' by a gamma distribution with
the same mean and variance, and then determine C; and the probability of
a Type II error. In some applications, N is relatively small so the central
limit theorem does not apply to the sum :7’ s, particularly when no star is
present. Also J7{ is strictly positive. Hence, a gamma distribution is a
better approximation to the distribution of191 than a normal distribution,
in general. 1In some cases, a normal approximation is reasonable, and it
may simplify the calculations. The probability that JI> C‘I: , when a star
is present, is a measure of the detectability of a star image. Note that
the above results can be applied to an arbitrary image and background since
s

G. and G are general intensity functions.
b

t
The test statistic J can be simplified. For data points (xj, yj) with

A‘GS(XJ-— X, >\/_;“\/) < 7\561,()(5,\/‘;)

the corresponding term in :7/ is essentially zero. 1In general, the star
image is localized to a small region about (x,, y,), and the background
intensity Gb(x, y) is slowly changing over the field of view. Hence, only
data points near (x,, y,) effect the value of J7l . (A quantitative measure
of nearness will be given below.) Further, Gb(xj, yj) can be assumed to be
constant in the region near (x,, y¥,).- With these assumptions the test

statistic reduces to

NI
\.7 :Z \n -AllG. GS(XJ‘—XO)Y&-\/O) +‘
J=t b7b
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where N' is the number of data points near (x,, y,) and Gy = Gy (x5 ¥,). This
detection teéhnique is similar to the technique described by Montgomery,
in that detection is based on localized data points.

In the remainder of this section, Gs(x, y) is assumed to be a Gaussian

ot
w

density function with zero mean and a covariance matrix

2

o. a0 F

X X \,
> = uE

0.3, g~

XY € y
Let
2
R® = | (%) 2 P0-x0-v) 4 (y-v.)°
)= Pz sz Ty 0‘\/ (T\2
/

2
The ellipse R < 1 contains forty per cent of the star radiation. It is

convenient to define the signal-to-noise ratio

r = A,
y
™[ Z]"=2,6,

which is the ratio of the total star radiation to the background radiation

2
in the ellipse R < 1 centered at (%, Vo). With these assumptions the

In practice the shape of the star image is not Gaussian. The character-
istics of the image change across the field of view, and from one lens
to another. A Gaussian model has the advantage of being functionally
simple, and yet having three shape parameters Gx, Tys P

Iv-16
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test statistic becomes

! N R //
J:Zlh r'.é"'2+]_ , (1)
i=\ '

where R is the value of R at (xj, y).
J |
’
Further, one can now easily evaluate the moments of ./ and then the
4

/ !/
approximate distribution of 7 , see IV.E.2. The mean of J  becomes
€,€ TXS[E(r.\ + Fz(r.B/r]
when Ag # 0 and

EoEqT A, Fz(r;)/r“

when A = 0. The functions F (r.) and F (r ) are
s 1 1 21

D= (e 2) In(Gag) -y

F(r) 2f'” [_P_.éz+| dz
p 2

F(

I

These functions are graphed in Figure 3.
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Similarly, the variance of j' becomes

€€, TALF(r) + F(r)/¢]
when X # 0 and

€€ T 2, F4(r,)/n

when )\s = 0. The functions F3(r1) and F4(rl) are

F(r) = (l+%) [Inz(ﬁz,_ +]) - zln(\“_zt +|)} +2

F4(r,) = ijh’\a[% €—2+|] a2

o

These functions are graphed in Figure 3. Note for ¥, > {0 , the variance
/
of J is greater than its mean; a normal distribution is not reasonable.
/ ]
The three basic parameters in EJ and Vgp J are the expected number of

emissiong for the observed star éoéo’T 15’ , the expected number of

emissiong for a target star e° E-q'r Pl , the expected number of emissiong
{
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2 ' 1/
from the background in the ellipse R < 1, ¥ leb | ZI @ .
With the mean and variance, the distribution of :7’ can be approximated

with a gamma distribution; the density function is

o (@)t e
(p)
oA = Ejl/Varjl

8= (EI)/Var 0.

where

Using this approximation, one can evaluate C and the probability of detect-
p
ing a star with intensity Xl. The probability of detection measures the
detectability of the star. In addition, one can determine the probability
of detecting an arbitrary star when the test is set for a star with intensity
Kl. This measures one's ability to discriminate against weak stars.
When the signal-to-noise ratio r is large or small, one can obtain

'
special approximations to JJ . In most stellar applications r is large.

In the following paragraphs, these approximations are developed.

1. Large Signal-To-Noise Ratio

To illustrate the relative significance of stellar and background
radiation, an example will be presented using a typical set of system para-
meters. The average integrated starlight on the galactic equator is 184

tenth magnitude (photographic) stars per square degree." The star being

% This data is from C. W. Allen (1963) ©p. 235.
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observed is at the equator. Assume the area of the star image is one square

L/
minute of arc, i.e., T 'Zl z=l . Then the test statistic (1) becomes

) 921 M - R?/.
1 _ - - /2
J = T4 |J
J

In [q.aouo“c:' (2)
{

where M is the photographic magnitude of the star observed. Data points with

-92 -R? )
‘7.80xlO4C" M ‘/24102

are not "near" (X,, ¥,) and can be neglected. This inequality defines the

elliptical region of interest; its 'radius" is R/:. ')/52,2_].84.{\4 » which is
graphed in Figure 4. When R, is small, the second term in In["'J of (2)

J
can be neglected. If most of the star data points occur near (%,, ¥,), the

test statistic becomes

/ ! -, 92 N
J'= N'In(ago*e™) - L T &® (3)
j=v 4
For data points with
- 94IM - R:
9.80x10° TN “Ril2 2

the second term in (2) can be neglected. This inequality defines an elliptical

n
region of approximation with '"radius" R = '\/138 - /.84 M
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This "radius” is graphed in Figure 4. For example, if one wished to detect

a fourth magnitude star and U, =<39 =Ll minutes of arc, data points more

ald
than 2.8 minutes of arc from the star image do not influence the probability
of detection. Further, if one only considers data points l.4 minutes of arc
from (%x,, ¥,), then the simple test statistic (3) may be used. This includes
95 per cent of the star data points, see Figure 4.

From the preceding discussion, one concludes that a detection technique
based on statistic (3) is reasonable, and optimum in many cases of interest.
In the following paragraphs, a detection technique based on (3) will be
considered in detail: namely, Y

1t 7 = 2N' |ln(rn/2) - A Rf >CP (4)
a star is present. Only data ;;;nts with R, < R, are considered;
N' is the number of these data points.
The 'radius" R, is selected so that the fraction f of star radiation in the
ellipse R < R, is near unity (.9 or .95); the fraction f is included in

Figure 4.

f = ,(j GS(X)\/) cliy
P4
R<R,
The constant C is selected so that the probability of a Type I error is P.
P
This detection technique will "detect' a star when many closely spaced emis-
sions are observed.

The detection technique (4) has a simple implementation in terms of a

spatial filter. The spatial impulse response is
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| 2in(n\ — R(x,y) R<R,
h(x,\/)—- (Z) (5)
O oﬂ'\ev- wise
where
2 _ { 2
R (X)\/) = 5 (X-X.,\ _ 2?(X—X°3(\/"\/o) + (\f_\/o\'z
l+e* | "o 2 0y ToR

Since R, was selected so that the first term in |n[“'1 of (1) is greater

than unity, h(x, y) > 0.

2. Small Signal-To-Noise Ratio

If rl is small, say less than one-fifth, statistic (1) can be approxi-

mated by _ Rz
e J /2

-

! N'
7= 24
=t %

The corresponding impulse response function is

n o Rz
h(x)\/) = =€ RiGy) € R,

O otherwise

This is essentially a matched filter since the impulse response h(x, y) and

signal GS(x - X%, Y - Y,) are proportional.
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It is interesting to compare the impulse response functions for dif-

ferent signal-to-noise ratios. Assume h(x, y) is normalized so that
h(x,, ¥,) = 1. The function value h is graphed in Figure 5 for different

values of r_, as a function of R. For r_ > 10, (5) is graphed. When r

1’ 1

is large, the detection technique is primarily dependent on the number of
emissions for which R < R;. In other words, the optimum detection technique
is based on the light intensity in an elliptical region about (x,, ¥,)-

When r, is small, the decision also depends on the spatial distribution of

1

the emissions.

3. Remarks
In practice the star position(x,, yg is unknown, and the detection
techniques must be modified. In particular, the likelihood ratio test

statistic becomes

N
%
J = (MAX -ﬂ_ 'A‘G'S(X';"Xo)\/i-\/‘) +1bG\:(XS :V,‘)
%o, Y YEV  j=)\ ]bi(xhyi)

+
A star is present if J > C: , where C'op% is determined by the proba-

bility of a Type 1 error. In many cases of interest, J7* reduces to
NI
MA X [ZN'(QB -5 R
(xo:\QSGNI 2 3=t !

Only data points with Rj < R, are considered; N' is the number of these
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data points. When the signal-to-noise ratio r 1is large, the optimum
detection technique is to scan the field of view with an elliptical region
(R < Ry), and base detection on the peak radiation in this scanning region.
When the signal-to-noise ratio r1 is low, the optimum detection technique
is to scan the field of view with the spatial filter (5), and base detec-
tion on the peak output from the filter.

The value of (%x,, y,) that maximizes D’ is the maximum likelihood
estimates of (x,, y,). Hence, the preceding detection technique yields
an estimate of the position of the star image. After detecting a star and
estimating its position, one can estimate its intensity. The maximum likeli-

hood estimate of A 1is
s

!

RS = N - &€.T (Toyxoy2,G,)
€aby £ T

where N' is the number of points for which Rj < R,. The mean of is is

-~
KS; the variance of KS is

KJ-F + m0, 0, 2,6,
€ €q F2T

In the following section, lower bounds are derived for the variance of
position and intensity estimates; these bounds represent the ultimate
capability of any sensor.

The stellar background has effectively a homogeneous component and

a granular component. The homogeneous component results from weak stars
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that are closely spaced; this component changes slowly across the field

of view. The granular component results from stars slightly below the
brightness level of interest, Xl. In the preceding paragraphs, we were
primarily interested in detection techniques to discriminate between the
homogeneous background and star images. To discriminate against the granular
background, one must combine detection and intensity estimation. 1In parti-
cular, when a star is detected, its intensity is estimated. If the intensity

estimate is not large enough, the detection is ignored.
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C. _Accuracy Limits for Position and Intensity Measurements

In this section, the ultimate capability of sensors to estimate the
position and intensity of a star image is derived. In particular, lower
bounds are derived for the variance of position and intensity estimates
using a Cramer-Rao bound.* These bounds are independent of the estimation
technique, and thus represent the ultimate capability or "information limit"
of the sensor.

Assume there is one star image in the field of view. Let (;O, ;o) and
{s be estimates of the position (x,, y,) and intensity XS of the star image
based on the observed values (xl, yl) oo (xN, yN). Assume the mean value
of the estimates are (x,, y,) and Xs’ respectively. The variability of the
estimates can be measured in several ways. The variability of is will be

measured by its variance, Var (KS). The variability of (x,, y,) will be

measured by its generalized variance

S = Var?(o Von‘;"’ (\‘(0\2)

where p is the correlation between x, and y,. The generalized variance S

A ~ A

measures the joilnt variability of x, and y,. It increases with Var x, and

* Cramer, H. (1958), p. 477. Also, Swerling (1964) has obtained similar
results for waveform parameter estimation.
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var y,, and decreases with I p |. Further S is invariant under orthogonal
Py A
transformations of (x,, ¥,)-
The generalized variance S has an interesting geometrical interpretation.

~ ~ ~ o~
Let ¥ be the covariance matrix of (x,, y,). Note that I z , = S. The area

of the ellipse defined by
= = L (XoXg gy ) 2 "“‘o) sc}
E. {( YYD (\/_\,.

AR | )y
is wC1Z | 2 = arc S 7z . Further, the probability that (X, ></\°)€ E—C

2 -~
is P( xz < C) , When (x,, y,) are normally distributed. 1In the

following paragraphs a lower bound is derived for S which is independent of

the estimators x, and y,. Hence, the confidence ellipse E. has a minimum
area, at a fixed level, In other words, one can change the variance

of the estimators by using different techniques, but the generalized variance

will always be greater than a specified constant.

First consider the variability of Ag. In subsection IV.E.3 a lower bound is

derived for the variance, namely,

Var ﬁs z, (61)—‘

where

Rs(l‘%)(—ls*-;\b)—oo G'S(X)\/) + KEGB(X’\/\/RS Xey
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Next assume Gs(x, y) is a Gaussian density function with mean zero and a

covariance matrix

2
9% OxCypP
2 = 2 ]
“oye g

Since the integrand in (6) is zero except in a small region near the origin,
Gb(x, y) is assumed to be constant. Let Gb = Gb(O, 0). Then the value of

the integral only depends on the signal-to-noise ratio

As
"TIEIWRBGB

r =

Let Hl(r) denote the value of the integral; Hl(r) is graphed in Figure 6.

Then

Fal

var(%\—i) i €€ \{*PFH ()

Next, consider the variability of (xn, yo) In subsection IV.E.3 a lower

bound is derived for the generalized variance S, namely,

S> (Bx By ~B§y)pl

where

B, = €.€q AT x;rff [2,6,60y))% ]
-5 Gloy) + A, G 0oy, ordy ()
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B = & eqz‘rff [>,60,9))°
! Gylx,y) + A G, 0,y /2, dx dy

(8)

B, = _€o€qAsT XTJ( 2.6s00y) 226 00y) 40 4
! T 74 G, (x,y) + leb(x,\ﬂ/’/\S X(q/)

where

9, G'S(X,\» = DG,(x,y) BZG-S(X,\A = bG'E(X,\/)
D X D y

Assume Gs(x, y) is a Gaussian density function with mean zero and a

covariance matrix

s - Oy Oy 0y £
2
. Cﬂy (3 g,
Then P G(X,\/) = ‘_:—L‘— -Z(- — _\L
1 s (|”€2)0_X (O_X G'y) G’S(X,\/>
9, Gslx,y) = ‘ y ~_eX\ G
273 (\..P'z)(ry (7—), PO‘A S(,y)
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The integral in (7) reduces to

(1-¢* (Taf[ ?}J’() ) ]

G(K \/3 d)( cJ\/

"G (X,\/) + A G (x \/)/7\

The integral in (8) reduces to
+€ L)Z _ 2Pxy
q G'XU’\/

. Gsz(X,y> dx d
Gloy) * A&y,

The integral in (9) reduces to

('”62; %0y -g { (%)2 +(%/T‘vf ) %\éy (Lt(:f\)]

. G;(X,\/) dXA\/
65()()\/> -+ REGB(Xb\/)/;\S
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Since the infegréh&é of (10), (11), and (125“ére_zero except in a small
region near the origin, G, (X, y) is assumed to be constant. Let
Gb = Gb(O, 0).

To evaluate (10) it is convenient to transform the coordinates and

d.iagonalize the quadratic form in Gs(x, y). Let

— 3

Y
N\

~—~
W
o’

rnC (-'|
LuVvo v - Dl v

U \/
vy= WU sinb + VcossB

with 6 = 0 when p =0

6 = /4 when p ¢ 0 and c =9
y
g = 1/2 Arctan[ 2 PCFX(TY _)
2 __ A
(T% CT&

when p # 0 and o # 9y See Figure 7. Then
x

2
GS (X) \/3
Gs““‘/) * 7\56’},/'/\5

elalg) -22)] - 2
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i

l Cos’8 _ 2pcosPsing sm“’e}
(I;2
Y

|
2 2 2 d.
Ty ¢ Uy | Ix Ty
, 2 . 2
_I_a _ 2[ Smf + 20 tosOsind (‘,0529]
dy |—e Ty 0y O‘Y G'\/

Also

Hence

E5 = ékiéc'7\;1_ '
* -5 (-p?) a2 H, (r)
where
H,(r) = f[ x2 exp(-x*-vy?) dx dy
) 2T exp(-x¥z - v¥2) +2/r '
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Note that
0F = 02 cos® B + a? sin’B
O’y2 = 0 sin?f + &7 cos B
21 = o207 (1-p%) = o5 0

The function Hz(r) is graphed in Figure 6. Similarly, one can show that

B\/ - éoéqhs—r ‘
I-F, (-¢%)ap

H, () .

Next, consider the integral in (12).

Using transformation (13), (12)
becomes
_.fD F*
— o2 (\")
(1-p )G‘Xo‘\/ 2
and
BX\/ - _ €, Gq'/\sT c H (\,.>
| — ¥ (l—fz)O'XO‘y z
Therefore,

BB -B, = [eoeqstHz(r) : |
X2y Xy P O_Xz O'\/E(I-(Jz)

and the bound on the generalized variance is

S > ’Z) [ l—‘Po a
€,E4 AT H,(r)
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The quantity |} | measures the spread of the image since lZl = Cnf ija .

—

The product g, €q Xs T measures the effective star intensity. The function
H2(r) describes the effect of the background on the image.
In subsection IV.E.3 it is shown that B;l is a lower bound on Var x,. It is

. . . 2
informative to express the bound in terms of Gﬁ, gy and 0; namely

~ 2__2
Vay X, > 20, J.
O—vz + G2 + (0,2~ g2) cos 26

) -2
€, €4 AT H,(r)

At different points in the field of view, the image size (cu, g ) and
v

orientation 6 are different. Hence, the accuracy to which the image can

be located along the x-axis depends on the position of the image.
-1 ~
By is a lower bound on the variance of y,.

Similarly,

The bound on S can be extended to form

Var 20 \/ar\’/‘o > Var Qa Var\7°(\— f/;z) >,

2\ ~1
(8B, ~8;,) > (BB)Y .

" ~

Hence Var x, and Var y, must satisfy three bounds

A -1 -

Var X, > B Var §, > By

A '\
Var x, Varyg, > (BxBy - B:Y)
1v-39
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For fixed o, and ¢ , as the orientation 6 of the image changes, B;l and
v

-1 2

By changes. On the other hand, Bx By.- Bxy

bounds are illustrated in Figure 8. When the image axes are parallel to

is independent of 6. These

the coordinate axes, only two bounds must be satisfied
-l

A ~( A
Var X, > B Var V. > B\/

X

Also note that the accuracy to which x, and y, can be estimated decreases

as the correlation between the estimates increases.
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D. Numerical Example

In this section a particular system will be considered in detail to

illustrate how the preceding theoretical results can be applied. The

system parameters are as follows:

(1)
(ii)

(iii)

(iv)

)

(vi)
(vii)

(viii)

Optical aperture is 3.3 inches with a 46 degree field of view.
The energy in the star image can be described by a Gaussian
function.

Image at the center of the field of view is circular (Gu = cv)
with a diameter of twenty seconds of arc.

Image at edge is elliptical with a radial size o, of 60 seconds
of arc, and with a transverse size o, of 30 seconds of arc,

see Figure 9.

The image size increases quadratically with distance p from the

center, both ¢ and o, In particular
u

Ou = 50 (\7523)2' + 10
20 (_(3_)2 + 10

23

g,

v

W

where p is the radial distance from the center of the field of
view to the star image in degrees, and where cu and o, are
expressed in seconds of arc.

Optical efficiency is .5.

Quantum efficiency is .1.

Exposure duration T is 100 micro-seconds.
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FIGURE 9: OPTICAL ABERRATION MODEL
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(ix) A fourth magnitude (photographic) star is observed.
x) The effective background Xb Gb is 300 tenth magnitude stars

per square degree, and is constant near the star image.

1. Detectability
With the above assumptions the optimum detection technique is based on

(1). The signal-to-noise ratio is

r, = 3.48 xi0*
[5(%%a) +1][2P 3 +1]

which is graphed in Figure 10. Three points in the field of view will be

o
considered p = 0, 11.50, 230. The basic problem is to determine Cé so that

the probability of detection at the edge of the field of view is .9, and
then to determine the probability of detection at p = 00, 11.5°.

The moments of the test statistic (l) can be evaluated using Figure 3.
The mean is 57.1 at p = 0°, 48.6 at p = 11.5°, and 39.0 at p = 23° when a

0°, 356 at

fourth magnitude star is observed. The variance is 461 at p
p = 11.5? and 222 at 23°. The distribution of ;j/ will be approximated

by a gamma distribution with the same mean and variance. The density is
B-1 —aK
2 (xX) C
r(g)

o

° 11.5°, 23 .

where p=20
o= 124, 137, .176

7.12, 6.66, 5.85

W
fl
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Then Cé is defined by

_ | B~1 5V
9 = — Y e 4d
f , () Y

dC
P
where B = 5.85 and ¢ = .176., Hence aCé = 3,04 and C; = 17.3. With this
threshold the probability of detecting a fourth magnitude star at p = 11.5°
is .98, and at p = 0° is .99%.

If one observes a star with an intensity below fourth magnitude, the
probability of detection is reduced. This probability determines the number
of extraneous weak stars one detects. Note that parameter o is essentially

3
independent of the star intensity when r > 10 , and that B is proportional
to the star intensity. The probability of detection is graphed in Figure 11
3
for C; = 17.3. With r > 10 , the background will not produce a detection.

For the range of signal-to-noise involved in this example, the detection

technique in expression (4) is reasonable where R, is the order of 2.5.

2. Accuracy Limits

From the results in Section IV, one obtains

\/dr'(:’is) >/ l—R
%) 7 e AT Ao

The standard deviation of AS/AS is graphed in Figure 12 as a function of
star intensity. ©Note that the bound is independent of position p since

3
r > 10 .

Two position estimates will be considered. First, assume one estimates

the position of the star using polar coordinates. The standard deviation
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of the radial error is not less than
eyig | 1-R ]
[50(23 €€, AT H(r)

The angular error is not less
2
20 (_P_ + 10
23

3600 P

l/z

\
[ [ - F% /2
Eoéq’h,—r H(\’",S

expressed in radians. These results are graphed in Figure 13 for a fourth
magnitude star.

Next, assume one estimates the position of the star using rectilinear
coordinates. The standard deviation of the error along the x-axis is not
less than

22 '/a
E’G} (ik ’ —'E;
T2+0t + 2_ge2
S +0Z + (g2 -g2) cos 26 eoe‘{l;l‘Hz(ﬂ

Lines of equal accuracy are graphed in Figure 14, for a fourth magnitude
star. Note that the bound on the product of the "x-error" and "y-error"

increases as p .
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FIELD OF VIEW

FIGURE 14: LINES OF CONSTANT ERROR IN X- DIRECTION, STANDARD
DEVIATIONS OF 5 AND 10 SECONDS OF ARC.
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E. Special Derivations

1; Optimality of Detection Method

A detection technique is characterized by a sequence of sets
Wos Wys «oes sz, «+. in Euclidian spaces of two dimensions, four dimen-
sions, ..., 2N dimensions, etc. If N emissions are observed, a star is

"present" when

(xu\/,)xz,\/zy" y XN ).\/NX & o,

Let x denote this (2N) -vector. The probability of a Type I error is
oo
> [f0R] dx =P
N=i W,

'As-—o

and the probability of detection is

Jw‘(x\

WaN

- %
Let uENbe the set such that

£, (x) B \le‘
f, (x) PN*

where C is selected so that

j‘NL(- N\—AOAK”:P'

The sequence w%, w¥, ... defines a detection technique that minimizes the

i

A4=0

T ™M
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detection. Let EN denote the compliment Wee Then

oi’ J {“(E)PN\ di * sz\ X {»5-()'9 PN A SO

N=| * A.F0
wzwnsz S w, N, s

dx =

N= Wi Ny s W, Ny s=©
and hence
% S P dx = Z j 'Y’N(X\PN\ Ax
V=L Wiy N ao,, Ag=o NE gy g A=o
The probability of detection using w§ is then
Z S £ lx) PN\ dx + Z j £ (%) PN\ dx >
v= MWy s~ N= ﬁ:n;zw As=4,
S ¢ _
012;-4 * {-N(E) PN\xsflld)i " E—I pj _{_N(Z('\P“\ 4% =
W N - w;Nﬂsz Ag&©C
Nz_ j -‘:N()S\PN\ _ dz(u + Z‘: ij __-QN()»OPN\ C&XZ
Uiy RN TN e
2 gl A+ T ) foR| _dx=
- N N ~ — N N ~
M=t ot N A=, N=1 oy NG, 2,272,
z g (x)P ay
N=1 “‘zju ~ N ‘ls' 1

Therefore, {w;, wZ’ ...} maximizes the probability of detection.
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2. Characteristic Function of :7'

The basic test statistic is

J’ Zln MG (ay- %o, -y 4 AG (%5,y)
i= A G(x“\/)

where the (x , y )'s are independent and identically distributed with the
J ]
density
G'S(X_XO)\/‘Y,) + ‘>\LGB(X)\/B
-'ls +1L

and where N has a Poisson distribution with mean N. To evaluate the char-
/ . .
acteristic function of JJ , the first step is to evaluate the characteristic

f
function J for a fixed value of N. In particular,

E{ CiuJ' }N} _

{E exp i In [ MG, ,A\L-zzu)mcrb(x,y) )]

since (xj, yj)'s are independent and identically distributed. Let ¢ denote

the quantity inside the braces. Then

E EiuD' 2 gb
{€“7] =

-—

N N N{(p-1i
o )
4

Z IZI
i

and the logarithm of the characteristic function is
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NU A G (x=%py-v.) + A,y (x,y)
A+ 2,

, {exp [ i U ln(R,GS(X'Xo,\/—\/J + A, Gp(x,y) )—X — 1} ax c\y
;\bi(X,\/)

Expanding the exponential, one obtains the semi-invariants

A= (( 7\G(X Xa,\/ \/\4—7\},6 (x\/)
' A+ A,

n
. [ ‘H-K’)\sv(’s(x‘xo )\/-\/o\ + leb(XJ\/))] dX d\/
-Ab Cho(X;V)

withn =1, 2, 3,

Next, assume Gs(x, y) is a Gaussian density function and Gb(x, y) is

th

slowly changing. The n semi-invariant becomes

K, = €.€4TA jf&(x,\ﬂ [\n(W Gs (%,Y) +\‘)T dx dy

NG,
€€, TAG H in[ 2, & (x,y\ +\ﬂ” dx dy

b

The first integral reduces to
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°° _d RZ 1,2
f[ ‘ e fin(n e " dx dy =
2mlzia (‘z' #1)] e dy =
_.¢>D°° ~' )
g z (x%+y?) L (k@42 h
[f-?j:re"‘ [\n(_g_ez +\/)+\>] dx dy =
AN oo

[ Trlg et esrae-
[ Im(g et e

Substituting y for

-2
'n(ﬁﬁ’ +|)
2
the first integral becomes
> J|n(\"/a+) y
£ vyt e’ dy
0L /"

The second integral reduces to

[[ [ofze™ )] oo -
EAGCERED T
\zt"zrj Em(% éez/ZJr'ﬂn pde 46 =

2|zl Sj{ln(% et \ﬂn dz

IV-56



INFORMATION CONIENT

3. Lower Bounds for Xs and S

To derive the lower bounds for Var )\s and S, it is convenient to use

1

a more compact notation. Let ’Z'N be the vector-

X,
Y,
X
2 - z
£n Y,
v

and

O Xy
Q =16, = Yo
93 2'S

Let L(g l N, EN) be the likelihood function

LevN, 20 = BB £ (5 )

= P ()
Assume E(N,EN) is an unbiased estimate of @, i.e.,
Z o fez)LEelNz )z, = 8
(C1)

where the integral is 2N-fold.

Assume one can differentiate under the integral in (C 1); then

Zl J@J.(N,gu) dInL(8IN, 2,) L(BIN,z) d2Zy =8
= >6; ~ - ‘

v-57



INFORMATION CONTENT

Let u (N, EN) be a vector with components

uw Nz ) = 21n L(& N,z
bGJ

Matrix transposition will be indicated by a prime. Then

io j,é:(N)—zvN\ %I(N’Z—N\ L(Q‘ N)ZN\ dZN = I

N=) ~

where I is a 3 x 3 identity matrix. In other words, the expected value of

the matrix

D)

(N’ZN) %'(N’EN)

is the identity matrix.
Since E (Q'I N, zN) is a likelihood function

[~ -4

Z [L(giN,z) az, =

N=y
Differentiating this equation with respect to ©,, one obtains
]

o0

L [ uln,z) L(8IN,z,) dz, = O

N=1{

i.e., the expected value of v (N, z ) is zero. Therefore, the covariance
4 ~ ~N

matrix between 6 (N, EN) and \A(N’fEN) is

[\’18

2

=bu

f[é(Nz )-081 W(N,2) L(8IN, 2,) dz, =

J

TN
=z

(

™M

20 WN,z, ) L(8IN,2, ) dzy = T
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Next define the 6-vector

é(N 2,)
wiN,z)) = |7 ™
' \,é (N> ZN)
The covariance matrix of w (N, ’?‘N) is
> _ [Zes 1 )
~ I 2w

o)
9 and Zuu are the covariance matrices of 2 (N, "Z'N) and u (N,ﬁz’ )

where Za

”~

Assume ’Z‘M“ is non-singular. Let o and B be arbitrary 3-vectors, which are
r~ ~

not random. Then

(3" 3Y = Cov'lg

~

\/ar[i’é(N,gN\] Var| (?,/%(N;ZNYR =

(2{,’206%\(@:2\“& @»\ (CZ)

=t
Let 9 = iuu & then
{ -\ 4 d
p guu % < 2 299 ~
Therefore,

for all o # 2

e
rey iz j 4% > dg = T
2 =1

(Z) 2ol df S ke 2'Z 092 £ F(E) 12 56l
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and ‘Zee\ >, \ Z““‘—l

This is the fundamental bound on the variability of estimators of x,, y,,

-~
and A since Iz , does not depend on the estimator 9.
S ~MK ~

The matrix z“ can be simplified. First
~ A

In L(gIN,z) = Ru(83) - nl1-P(8)) - Nn(e,+2)

N
+ Z ln[93GS(XJ“9. >\/J"'ez.) + ‘XEG‘E(XS >\/,')‘l
J=

N
then = 3" ~632,6(x~8,, v, -6:)
J=1 9305()(3‘9:)‘/_\'-92) + ‘RLG\:(XJ' ’\/-\'3
N
ua - Z —83 DzG‘S(Xj—e,)\/j”ez) ,
J=1 93Gs(xj'9|>Y5-92\ + leb(xs’\/.Q
N
Uy = 2 e Gs(xs- 6., y;-6:) €obq T
= V3L Xs—a.,\/s-ez) + ]LG},(XS)V_{) l_Pa(63)
where
21G(xy) = 26(x,y)
DX
226‘()(,\/) — P} G’(Y,\/S
Dy
Without loss of generality, one can set § =6 = 0 in the bound. Then

2
the entries in 2 become
~Kn
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E(L,(,\2 — N E[ | 2,G,(x,y) }2’
-2 Gglx,y) + XbCrb(x,\ﬂ/es
E( . = N Q\G'S(X,\/) azc“"s(’(>\/) ]
) 1— % EI(G,(x,\,) *+ A Gylx,y)/6;)>
E( uz»?‘ = N E[ 9, G, (X,y) . _r‘
- B L GhLy) + A Gy (x,y)/ 6
E ( U, U \ = _K’ _[ Gs(*)\IB b,G—,(\(,\/) ’X
: 93(‘-\30)[ (G(%,y) + X G lx,y)0,)°
Elu,u,) = _-N i ACRMIEMACRY) ]
24, 6;(1-8) L (G, (x,v) +7\bi(¥,\/8/93\1

E(uy)® = VN { Gs(xv) \?—
B2 (1-P,) LG:(y) + A, 6 (x,y)/ 6,

By setting

in Equation (C2) one obtains a bound on Var 83, i.e.,

A

Var 6, 2 [E(u3\2]" .

¢ = (32) B = @)
o) | _

6]

By setting
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in Equation (C2) one obtains a bound on the generaliéed variance S, i.e., -

S 5 (B FEWE - E*(wu)]”

Note that the above results can be applied to an arbitrary image and back-

ground since GS and Gb are general intensity functionms.
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PHOTODETECTORS

V. PHOTODETECTORS FOR SPACE NAVIGATIONAL SYSTEMS

For a scanning optical system, a photodetector is required to
efficiently convert radiant energy from a class of navigational stars into
electrical signals which have sufficient magnitude to override any noise
source signals so reliable signal détection can be performed, Various
types of photodetecotrs will be discussed, and it will be shown that the
photomultiplier is superior to non-multiplying photodetectors. This is

followed by a detailed discussion of typical photomultiplier characteristics.

A, Energy Distribution of Navigational Stars

1f the 100 brightest stars are considered and if the number of stars
of a given spectral class are plotted against spectral class, the resulting
graph is strongly peaked at class A, see Figure 1, It is, therefore, logical

to consider the response of photodetectors to Type A stars,
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B. Energy Available from Type A Star

Code (1960) has tabulated the monochromatic magnitudes of Vega (¢ Lyr)
per unit frequency interval, m(1l/A), relative to 1/A» = 1,80 for a band pass
of 10 Angstroms, where Vega is a type AV star. These magnitudes per
frequency interval can be converted into magnitudes per wavelength interval

by the transformation, Norton (1964).
A
M) = ML) + 5 |°3|o [7.]

The absolute spectral energy distribution of Vega can be obtained from
-.4MM(A)
$O) = $Q) 10
-12 . .
where f(AO) = £(.5560) = 3.66 x 10 watts per square centimeter micron,
The energy available per square centimeter to a photodetector with an S4

response can be obtained by numerically evaluating the integral

Ay
SN FO0 - S0 da

where S4(A) is the S4 response characteristic, f£(\) is plotted in Figure
2, the S4 response is shown in Figure 3, and £() ° 54(A) is plotted in
Figure 4. The area under f(x)-S4(A) was evaluated numerically between
Ay = .34 micron and AZ = .66 micron as 1.027 x 10-12 watts/cmz. For a
one inch aperture and a 75 per cent optical efficiency, the effective

energy rate from Vega becomes 5.15 x 10_12 watts, The visual magnitude

V-3
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of Vega is +.04, so the approximate energy rate for a different magnitude

type A star can be obtained from Allen (1963), p. 192.

-.4-(7"1, -mi)

;. = Sz - {0

The effective energy rate from a third magnitude type ApV star was found
to be 2.52 x 10.13 watts for an S4 response, a one inch optical aperture,
and a 75% optical efficiency.

Figure 5 gives a spectral response curve, SD(A), for a silicon photo-
diode [Williams (1962)]. Figure 6 shows the plot of f(A) . SD(A) from

which the integral
A= 10

e 300 () dA

is numerically evaluated as .75 x lO-12 watts per square centimeter. The
effective energy rate from a third magnitude type AgV star was found to be
1.51 x 10-13 watts for photodiode response, a one inch optical aperture and

a 75% optical efficiency. The results are presented in Table 1. The relative
response of various photomultipliers to stars in different spectral classes

is described in Subsection II.D.
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PHOTODIODE RESPONSE

V-9

1.0



PHOTODETECTORS
TABLE 1
EFFECTIVE ENERGY RESPONSE OF PHOTODETECTORS
A \ Xl Effective energy | Effective energy
Response 1 2 f £(A)+S(\)d) | rate from Vega rate from third
microns| microns A with 1" aperture | magnitude Type A
2 star with 1"
aperture and 75%
optical efficiency
S-4 .34 .66 1.027 x 1022 | 5.15 x 10712 2.52 x 107
Photodiode | .4 1.00 .75 x 10712 | 3,08 x 10712 1.51 x 10713
2
(watts/cm”) (watts) (watts)
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c. Figure of Merit

A figure of merit often given for photodetectors is the 'noise
equivalent power per unit band width" (N.E.P. or PN) which is the input
signal needed to give an output signal-~to-noise ratio of unity in a one cps
band. Since the noise contains contributions from both device and back-
ground, it is evident that measurement conditions must be specified in
the evaluation of P_. In addition, the noise from solid state detectors

N

is frequency dependent.
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D. Sky Background

The sky background of faint stars depends on galactic latitude
and longitude; a nominal value is 180 tenth magnitude stars per square
degree, Allen (1963). If these are assumed Vega type stars and a slit
of 20 degrees by one minute of arc is used in the assumed optical system,
the effective background reaching the detector is,

a. --4(10-.09)
FL = (15)(5.15 = 107) 10 ‘%8 . 180

-3

= 2.4 *10 wafts

For a given photodetector, the minimum energy of a monochromatic
signal which can be '"detected" is that which causes a signal equal to the

shot noise. FPFrom the discussion of Smith (1957), the shot noise is given

by the equation

"

[ 2e 1, 2§

I RMS

but _
IJC = n'Qe' e
where n = sky background photon rate
Qe = quantum efficiency of photocathode
e = electron charge

v-12
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Hence
I = /Z ez Q n AS = shot noise due to sky background
fMS e
Q_-e
The product ——— has the units of ampere per watt, where h is Planck's

constant and v is the light frequency. So light radiation of WL watts

from a star can be converted by a photocathode into a signal current of

WL. Q‘ e ampere,
hv

Equating the signal current to the RMS shot-noise current yields

We

by { 2Q T o
Qe ;

- hvf_z_gr:)e_“i_

W
hv fa5

3l

Qe

For a quantum efficiency of .1 and at the frequency of the peak S4

response, we obtain

W, . 15510
Dy ers)

v-13



PHOTODETECTORS

Since the device noise has not been included and the required slit
area may be larger by at least a factor of five, it is conceivable that
a photodetector could be limited by sky background, particularly for

detection of stars weaker than third magnitude at fast scan rates.

v-14



-

PHOTODETECTORS

E. Electrical Bandwidth

The minimum signal which can be detected will depend upon the
electrical bandwidth of the detecting apparatus. This, in turn, depends
upon the rise and fall times of the signal pulses.

Let it be assumed that the star '"blur circle" is Gaussian and traverses
the slit in At seconds, If the detecting system is not bandwidth limited
the signal in the time domain will be,

.t
G = 1 e* w

{21 o>

The Fourier transform (spectrum) of Equation (1) is

..%;“f
Alw) = {Z € @
The signal has fallen to 1l/e in a time,
t=+{2 0
3)
The response falls to l/e at frequency,
w'—' E = Aw
g )
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From Equation (3)

st o 2{2 ¢

and from Equation (4)

AW . 2Tra§ _ ﬁt_
A

or the minimum necessary bandwidth is

a§. 2
r at

For the case where the optical axis is perpendicular to the spin

axis, the star transit time is approximately

st . BT

21600

where BC equals the blur circle in minutes of arc and T is the scan period

in seconds. So for this case the

A5-= 2% 21600
w B. T

For a typical BC = 3 minutes of arc and a typical T = 10 seconds, Af = 425

cycles per second.
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F. Suitable Detectors

5

PN is usually given in units of watts per cps”“. We can now check

whether a given device can be used simply by comparing the quantity,

P P /a5 watts

with the energy available from a star.

R. L. Williams (1962) reports a silicon photodiode with

B = [8~ 16’3_&’&&5_
VcPs

This diode using a 425 cps bandwidth can detect a signal of

P o= 37410 watds

and falls short by an order of magnitude in the required sensitivity.

It could just be used to detect a third magnitude Type A star if the

aperture were increased to

D= 2T = 5 inc.\\es.
151

Here the signal to noise ratio would be unity assuming the sky

background is negligible.
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G. Use of Gas Phototube

G. Kron (1952) has reported on the use of gas phototubes for infra-
red photometery in the .8 micron region. (This region is at the peak of
the S1 response and Kron's work was motivated by the lack of domestic
photomultipliers with S1 response.)

The principal sources of noise in a phototube will be the shot noise
of the tube (which in turn depends on the convection current and the
leakage conduction current) and the Johnson noise of the load resistor.
Let io be the tube current, ¢ be the gas multiplication factor, and R
be the load resistance. Neglecting the leakage current, the mean square

fluctuation in the output voltage is

vt 2€1L, RS + 4kT RS

where k is Boltzmann's constant, T is absolute temperature of the resistor,
and e is the electronic charge (see Smith (1957)).

The noise in the tube exceeds the resistor noise when

R- 2kT )

For example, if T is 3000K, i0 = 10 2 amp, and 0 = 1 (vacuum photodiode)

1
ZkT/EGZiO = 5 x 10 0 ohms. So for tube noise to be comparable to resistor
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noise, the load resistor must be very large.
In our case we will not want to degrade the response by making the
time constant of the input circuit too large. A half-power bandwidth

of 425 cycles in an RC filter requires a time constant of

RC = 1 = 375 * l6+ second.
2ma§

It is possible to reduce the input capacity to about 5 x 10-12 fd. Thus

we can make R as large as

f2 = 75 vnegc:kyns

1f we take the effective energy rate from a third magnitude star from
Table I for an S4 response the number of quanta incident on the photo-

cell is - 13

N = ii_z_l_LO_ - 5.06 "/Og /JAofons per second.
_r

With a quantum efficiency of 107 the signal current is

L= € (;%’;i = 8.0 ,CS'; omp

S

We temporarily neglect the gas amplification factor o since it
affects both signal and dark current noise signal equally. The dark

current noise must not exceed the signal current. Thus,

i,z {0 o {zei af
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which requires

-3

_i._ = 4.82 * 10 ampere
2¢ a§

N

ty

This value can easily be obtained,

For efficient operation of the phototube we have by Equation (5)

oot v 2kT
ey R,
o T 33

Potassium hydride gas filled photocells have been successfully operated
at gas multiplying factors of 50 without an increase in signal to noise
ration, Steinke (1936). G. Kron (1952) gives a design for a gas photo-
tube which can be operated at gas multiplying factors up to 100,

Under the assumed conditions the signal voltage due to a third

magnitude Type A star will be

é.SO‘R = 20.2 wmicrovolts

At room temperature the Johnson noise of the load resistor will be

ot . y/4-kTR A§ = 23 microvolts
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Therefore the input resistance of the amplifier adds as much noise and
the system is marginal.

However, improvement of signal to noise ratio by a factor 4 is
possible by doubling the aperture. Further improvement can be had by cooling
the load resistor. Indeed, the phototube and its associated circuitry
may both be cooled to advantage, Kron (1952). This cooling might be
simply done by insulating the detector from the rest of the vehicle and
allowing the detector to radiate thermally to the 3.1% space background.

It thus appears feasible to use gas phototubes as the light sensitive
element. Internal sources of noise must be carefully suppressed. A two
inch aperture at 757 transmission may be necessary, and it will be desirable

to cool the load resistor and phototube.
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H. Some Other Detectors

F. Low (1961) has described a low temperature germanium bolometer,
which appears '"potentially competitive with phototubes.'" At a temperature
7

o -
of 7K and if the conductivity to the surroundings were as low as 10

o . . . .
watts per K, this device has a noise equivalent power of

-4
’DN = 3 * )O Wﬂ;tts

CpsT
Over a 425 cps band the minimum detectable energy flux into the one inch

aperture system would be

72 = 6.18 « IO-’3 watts

Low calculates a time constant of .32 second for his device for these
assumed conditions, but it is also likely that germanium bolometers with
smaller time constants can be designed.

W. Franzen (1963) describes a non-isothermal superconducting bolometer.
A current passed through the sensitive element (which is an evaporated tin

strip on a 1000 Angstrom thick Al substrate) heats the element enough

o
273
to keep the center of the element above the superconducting transition.
The ends are cooled below the transition. Incident radiation heating the
element increases the length of the element above the transition resulting

in a resistance change. Franzen estimates that a noise equivalent power

can be as low as
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-14
R, = 2.8 <10 wa
Ceps)

It is, however, yet but a laboratory device and to the authors' knowledge
has not yet been actually built.

The use of p-n junctions as both a photodetector and as a parametric
amplifier has been suggested, Saito (1962). Modulated light falls on the
diode as a pumping voltage is simultaneously applied, see Figure 7.

The advantage of this device is that the noise contribution of the
following amplifier is significantly reduced. Garbrecht (1964) and
Saito (1964) have compared this arrangement to a photodiode followed by
a parametric amplifier,

A more promising approach would seem to be the use of avalanche
multiplication in a reverse biased photodiode. Current gains as large
as 1000 have been theoretically predicted, Haitz (1963). Di Domenico, et al.
(1965) report a signal enhancement by 25 db when mixing modulated laser
light with R.F. by means of a point contact silicon photodiode when
operated near avalanche breakdown. They point out that this enhancement
was obtained without an increase in the noise power and suggest the

possibility of shot noise limited operation.
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I. Superjority of Photomultipliers over Phototubes

There is no question that photomultipliers can be used. For example,

a 9502-S E.M.I. photomultiplier with

-7

B = 33«0 u(g,tfs
GP’.

is available. Thus in a 425 cycle band this can detect a signal of
- 16
ﬁ = 680 x ]1O wc.'f'és

With an S4 response (see Table I) and the assumed optical system this power
level corresponds to a 9.5 magnitude Type A star, neglecting sky background.

Lallemand (1960) has demonstrated the superiority of shot noise
limited detectors to those limited by the input circuit to the electronics.
The argument is specifically applied to photomultipliers versus photo-
tubes, but will hold for any multiplying device as against its non-
multiplying equivalent, e.g., gas phototube versus vacuum phototube,
avalanche photodiode or parametric-amplifier photodiode as against simple
photodiode,

The argument is worth repeating here. Let Im be the minimum signal
detectable at signal to noise ratio Sn’ for a photomultiplier and let

Ip be the same quantity for a phototube. Then if the photomultiplier is

shot noise limited
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S, {zet s

—
i
)

(6)
id = dark current in amperes
e = 1.602 x 10_19 coulombs-electronic charge
of = bandwidth, cps.

Assuming the phototube limited by the input circuitry,

= SnFﬁkT“_é ™)

: (o) . . . .
where T is in K and R is the value of the input resistor in ohms.

Define a modulation factor by

Mo 7 I

g 8)

Then Equations (6) and (8) give
2
I.=- zlz € 5, % )
r

Then, the minimum detectable signal ratio is

G =1L . _[° kT . (10)
I. S.€ 1ZR25

But R will inevitably be in shunt with some input capacity C which, indeed,
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sets the bandwidth as,

85 o 1
2MRC (an

The use of Equation (1l1) in (10) leads to

G .-._SE_ ImkTC (12)
. C

which depends only on temperature T, capacity C, modulation factor [', and
the signal to noise ratio Sn. C can be as small as 5 pfd. Taking

T = 300°k, s_ = 2,
n
G = 800 I (13)

1fr =1, Q/;-Im = iy, not an unreasonable condition) G = 800. And the

multiplier is almost three orders of magnitude better.

~53

Eatd
o

)
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J. Photomultiplier Characteristics

With the performance superiority of photomultipliers over non-multiplying
phototubes established, it is appropriate to further discuss some of the
important characteristics of photomultipliers as related to star detection.

In a photomultiplier, each photoelectron emitted from the photocathode
undergoes cascade multiplication inside the tube and comes out of the tube
as a pulse of many (about 106) electrons. 1If the photoelectrons were
multiplied by this process to form pulses of exactly equal sizes, they
would continue to contribute equally to the signal current, but in actual
photomultipliers the amount of multiplication is very different from one
photoelectron to another. Consequently, the stream of pulses coming out
of a photomultiplier tube has a very broad range of amplitudes, some of
the pulses contributing ten times as much to the photocurrent as others.*
Since the pulses are not of equal size, it is evident that the signal-
to-noise performance of a photomultiplier will be lower when used in combina-
tion with an ordinary current measuring or charge collecting (condenser-
integrator) system than when used in a system that counts the pulses with
equal weight redardless of these sizes,®* However, the current measuring
method is easier to implement for scanning optical systems. Because of

the very high rate of photoemission for bright stars, a pulse counting

% Discussed by Engstrom (1947) and Tusting (1962).

%%  See the discussion by Baum (1962) p.23,Farrell and Zimmerman (1965),
and Section VI.B of this report.
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technique would require a system of high capacity, high speed counters
which become somewhat impractical for low power satellite applications.
So far as is known, a pulse counting system has not yet been implemented

for a satellite system.

1. Photomultiplier Cathode Emission*

An electron may be ejected from the surface of certain metals if the
energy of electromagnetic radiation striking the surface exceeds the surface
potential barrier. The number of electrons ejected per incident photon
is termed the quantum efficiency. Because of electron scattering and
reflection at the surface during the energy transfer, the quantum
efficiency is less than unity.

Figure 8 shows the electron potential energy level diagram at the
inteface between a solid and a vacuum. Electrons in the conduction band
can move through the solid when a potential difference is applied across
the solid. If the energy of electromagnetic radiation striking the surface
exceeds the surface potential barrier, a conduction electron may be
sufficiently excited and be ejected from the surface of certain metals.
Other electrons not in the conduction band are more tightly bound in a
lower energy level and the gap between the conduction band and the lower
level valence band represents the energy required to raise an electron into

the conduction energy level band.

% Sharpe, J. (1961)
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For a semiconductor material such as an antimony-cesium alloy, Cs_Sb,

3
photons must provide enough energy to an electron to raise its energy level
above the conduction level and the surface potential barrier before

the electron is ejected as a photoelectron. 1In Cs3Sb, this energy is
approximately 1.9 eV which corresponds to a long wavelength tfhreshold of
.66 micron. Because it is relatively easy for free electrons to escape,

at room temperature the thermionic emission rate of Cs,Sb ranges from

3
102 to 104 per square centimeter per second. This rate can be drastically
reduced by cooling the material.

Above the threshold wavelength the quantum efficiency rises to a
maximum (as the excess energy supplied to the electron increases) until
the optical absorption of the photosurface and any window material causes
the excess energy and therefore the quantum efficiency to decrease. The
maximum quantum efficiency depends upon the cathode material and ranges
from .07 to 0.25.

Figure 9 shows spectral response curves for various types of available
photocathodes. The influence of the window cut-off in the ultraviolet
region is also shown. Table 2 shows a tabulation of photosensitivity
values in microamperes per lumen of tungsten light at 2870°K.

As can be seen, no photoemissive surface is available with sensitivity
above 1.2 microns. At the opposite end of the spectrum, normal glass
envelopes cause a radiation cut-off at about 0.35 micron, Special

ultraviolet transmitting glasses cut off radiation at approximately .22

micron and fused-silica glass cut-off at .165 micron. Consequently,
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TABLE II
TYPICAL PHOTOCATHODES
(Glass windows except where notedf)

| Peak Sensitivity
| Photocathode Form Long Typical
Quantum | Wavelength Sensitivity
A Efficiency | Threshold | (2870 °K lamp)
Electrons/
i photon n pAJL
SbCsO (S-11) .. | Semi
transparent 0-42 | 0-15 0-67 60
ShCs (S-4) .. .. | Opaque 0-45 | 0-10 0-7 40
SbCs (EMI ‘S") .. | Semi-
transparent 0-42 | 0-12 0-65 40
Sb(NaK)Cs (S-20) .. . 0-44 | 0-20 0-85 150
BiAgOCs (5-10) » 0-45 | 0-05 0-8 35
AgOCs (5-1) » 0-8 | 0-004 1-2 15
(also |in blue)
1 Mg (quartz window) . <0-2 | 0-004 0-39 —
+Au (quartz window) » <0-2 | 0-0001 to 0-27 —
0-00001
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photoemissive surfaces are commercially obtainable over a wavelength
range from .165 micron to 1.2 microns, Type A stars fall within this

spectral range.

2, Photomultiplier Secondary Emission

An electron with a few hundred electron volts of energy which strikes
the surface of a solid-vacuum interface will impart some of its energy to
a few adjacent electrons in the solid, Some of the excited electrons may
then have enough energy to overcome the surface potential barrier and be
ejected as secondary electrons. The number of electrons ejected depends
upon the energy loss rate of the incident electron and the energy imparted
to the secondary electrons. An electron with low incident velocity cannot
impart high energies to adjacent electrons, while a high incident velocity
causes the electron to penetrate deeper into the solid where excited
electrons find it more difficult to escape. Consequently, there is an
optimum incident energy which produces a maximum number of secondaries,
o, per incident electron. Figure 10 shows curves of o versus voltage
curves for photomultiplier secondary emission materials. A single stage
of secondary emission will multiply the current by about a factor of o,
and for n stages the photocurrent is multiplied by ",

Various geometries can be employed for a secondary emission multiplier
assembly., The design problem is to ensure that electrons strike the
secondary emission element (called a dynode) at points where the electric

field is directed away from the dynode and toward the next dynode. Four
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useful geometries are shown in Figure 11.

All four types in Figure 11 are electrostatically operated and may
be placed in two classes determined by the strength of the electric field
at the surface of the dynode, For the venetian-blind (Figure 1llc) and
the box-grid (Figure 11-d) structures, the directing field at the dynode
surféce is comparatively weak so the initial velocity of the secondary
electrons largely determines the landing position on the next dynode,
Since there is little relationship between the emission point of one
dynode and the arrival point of the next dynode, the multiplier assembly
is said to be unfocussed. Generally the box and grid structure is physical-
ly smaller than the venetian-blind structure. .Figures 1lla and 11b
show focussed structures with strong directing fields constraining the
secondaries to paths with little position spread resulting in less transit
time spread compared to the unfocussed structures. Larger currents may
be drawn since the high electric fields reduce space charge effects.

Each secondary electron emitted from one dynode is not successful in
producing secondary electrons at the succeeding dynode.* Therefore, the
stage gain depends upon the value of o which is characteristic of the
secondary emission element and the dynode collection efficiency, g.

Both 0 and g are voltage dependent. Figure 12 indicates the high efficiency
of the box-grid structure using the SbCs surface while an AgMgO material

must be prepared with cesium to achieve a high secondary emission.

* The effect of losing electrons between the cathode and anode has
been investigated by Gadsten (1965).
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3. Typical Photomultiplier Gain, Sensitivity, and Dark Current Curves

Photomultiplier sensitivity is specified at a given overall voltage
in terms of amperes per lumen, while the cathode sensitivity is specified
in microamperes per lumen. Figure 13 shows how photomultiplier sensitivity
varies with different dynode structures and dynode materials.

When the photomultiplier is completely blacked out, cathode thermionic
emission is multiplied by the dynode assembly in the same manner as cathode
photoelectrons resulting in a tube dark current. Photomultiplier dark
current may be specified either as the anode dark current at a specified
photomultiplier sensitivity or as the equivalent light input in lumens which
gives the equivalent value of dark current. 1If no anode to cathode feedback
occurs, the equivalent dark current input is independent of tube gain up to
some limiting value, see Figure 1l4. Above a certain gain, the equivalent light
input increases and increasing the voltage ultimately causes the tube to become
unstable. The rapid rise in anode dark current with gain is due to optical
and ionic anode to cathode feedback. The box and grid dynode structure has
a limiting gain value which is generally independent of the number of
stages. The venetian-blind structure characterizes a higher value of
limiting gain before feedback begins and is increased by a factor of two
for each additional pair of dynodes. Dark current also increases with
cathode area.

In any application of the photomultiplier to star detection, one of
the most important considerations is the tube dark current. Depending upon

what voltage is applied to the tube, there are three dominating types of
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dark current, ohmic leakage, thermionic emission, and regenerative ioniza-
tion. At low voltage ohmic leakage caused by slight conduction in
insulating materials is dominant. At high voltages regenerative ionization
caused by anode to cathode feedback of ionized gas ions or by light
emission from ionized gas becomes dominant. At normal operating voltages,
the dominant noise source is thermionic emission.* Thermionic emissions
from the dynodes contribute only about 37 of the total thermionic emission
noise. Thermionic cathode emissions are amplified by the multiplier
dynode chain in the same manner as photo emissions. Associated with
cathode thermionic emission is a shot noise resulting from randomly
emitted electrons, which is variably multiplied by the dynodes. The RMS
variation in the thermionic emission current is expressed by the basic

shot noise equation.

Lew = {2€ 1,05

1.6 x 10"19 coulomb = electron charge

where e =
Iav = average value of the cathode current
Af = electrical bandwidth in cycles per second.

I1f a cathode material has a simple thermionic work function, then
thermionic emission will fall with absolute temperature according to

Richardson's Law

* Engstrom, Ralph W., (1947)
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. . . 2
thermionic current density in amperes per cm

where =
Jk
2.2 , .
= amp/cm T = constant depending on cathode material
E = work function of material in volts
T = absolute temperature in degrees Kelvin

Hence, the most obvious way of decreasing the thermionic emission is
by cooling the cathode. 1It has been reported by ITT-Federal Laboratories
(1964) that the dark current of their photomultipliers falls about one
order of magnitude per lOoC of cooling and that the dark noise falls about
an order of magnitude for each 20°C of cooling. Since cathode materials
exhibit multiple work function characteristics, Richardson's ILaw does not
hold at low temperatures. It has been reported, Sharpe (1964), that the
decrease of dark current with temperature apparently flattens out at —4OOC

and any further cooling does not decrease dark current.

4, Photomultiplier Noise [Eberhardt,(l959ﬂ
At the cathode the RMS variation in cathode emission current is

expressed by I =i = fZeIkAf where Ik is the average or DC value

RMS

of the cathode signal current. From this equation a cathode signal-to-

noise power ratio can be expressed as

(,s_) I PR
Nk Lk zeas (14)
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1.6 x 10—19 coulomb = electron charge

where e

Af = bandwidth in cycles per second.

At the first dynode, most of the electrons emitted from the cathode
aré collected while the remaining electrons are lost in traveling from
the cathode to first dynode. The electrons collected at dynode, D1,
cause an input current I1 which has an RMS variation approximately
il = VEZE;Z;_i So at the input to the first dynode D1, the signal-to-

noise power ratio is
(_3) I . _L el (;)
N \ 2',1 Z@AS' ZeAS (15)

where ¢ is the percentage of emitted cathode electrons collected at the

first dynode., ¢ = Il/Ik is also termed the collection efficiency.
Equation (15) indicates a photomultiplier should have a high collec-
tion efficiency, i.e., the electron loss between cathode and first dynode
must be minimized. At the first dynode, each incident electron liberates
an average of o additional electrons because of the secondary emission
process. So the average current from the first dynode I2 = 0111. The RMS

variation of the current into the first dynode is multiplied by the

multiplication factor and is i Since the secondary emission

= o,i..
2K 171
process is assumed to be a Poisson process, there is an additional shot

L
noise component, i25 = (2e12Af)2. Since both noise components are assumed

independent, the mean square components may be summed
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2 =

£ 2 Gl () = 2eL85 * o7 2T
(16)

2esS (I,+ oy 1)
2eaST (V+ao)

Consequently, the signal-to-noise power ratio at the output from dynode D1

equals

(£;> = .;L:. = I:k = T I. - O gi)
Noo & zesST(wa)  (redzes§ (+o)\Nj 7

Thus the signal-to-noise ratio is degraded by a factor of Gl/(l+cl) due
to the multiplication process., For a typical o = 4, this factor becomes
4/5 = .80, so a typical 20% loss in signal-to-noise ratio is caused by
electron secondary emission multiplication.

The noise generation process at the second dynode is similar to that

described for the first dynode. So

33 .
i = zeI,»§ + i
- ~ d ——— . (18)
shot noise amplified noise
due to secondary from first dynode
emission :
But 13 = 0212, so
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ool - o2(i+a)2es§ L,
= ou(l+a)2es§I,
i - zeLaSLl+oiQ+o)]
(i) L. Lim(+o) . o (1+0) S
N, & zesfll+ ozU+odla+e) [I+aQ+a)]\N/ &
With 0p =0y = 4 as before,

S\
(Nn - 4U+4) = 20 . .95

%), [ +4¢)] I

So for a typical photomultiplier there is only about 5% reduction in

signal-to-noise ratio at the second dynode.

At the third dynode, the mean square noise current can be expressed by

. 2eT,45 + 0P =2elef + ofll+oyraD]ze ], 4§

"but
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SO

i:_=2eI+A§[l+03+°'§°'i+°;°:°T] (20)

If o, =0, =0y = o, Equation (20) becomes

. zel, Sl +o+ot+o?]

. R th
Extending the above argument, it is easy to see for the n  dynode

L'H'I = ZeIhﬂAS[ ‘ + 0 +0"t + 0‘3----........ +o~“‘]

The last dynode is the nth stage and is termed the anode, so the signal-
to-noise ratio at the anode is
L R LS
T
N/, o ZeI&AS-[‘+0-'+GJ"+ ....... +o--"']

I.= "1

[
S0
an
3) . o L (21
N/ IR i Rk a——-y | )
substituting crn+1-1 = (o-l)(crn+crn-1+ «e. + 1) Equation (21) becomes
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(i - o (or-N1, - (1) (s
N/. 2eas g (""-1) " (o™= 1) \N/,

.= (1-&) (s

——e |

(1= &) \NJ

If n> 6 and 0> 2, 1/0n+1 <«<< 1, so

S) - o=t (S 22
ﬁv a, ¢ hl i

Consequently, the total reduction in signal-to-noise ratio is independent
of the number of dynodes. Therefore, it is possible to use as many dynodes
as necessary to raise the signal level above other noise sources.

For a o = 4, the overall signal-to-noise is reduced bY a factor
4-1/4 = .75 which indicates a 25% loss. Recalling that there was a
20% loss at the first dynode and a 5% loss at the second dynode indicates
that the remaining dynodes contribute negligible reduction in the signal-
to-noise ratio.

From Equations (15) and (22), a relationship between the cathode and
anode signal-to-noise ratios can be obtained

(i =<&_l_§ _ -1 (S
N/, o~

N o N

A K (23)

From Equation (21),
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IL.) L
z'l- O.J LI

so the mean square output noise current is

o3

If G = Ia/Il = current gain of the dynode structure, then

c e G L o Gres
L = (ov_l) L (::’-')GZ,C §T. 26

Therefore, the RMS noise current at the anode is oG/ (c-1) higher than

for a normal DC current Ia'

5. Calculation of Equivalent Noise Input

A signal-to- dark noise ratio may be defined as the ratio of the mean
square value of the fundamental component of a chopped, square wave
signal current to the mean square value of noise current for a 1 cps
bandwidth (IRE Standards on Electron Tubes, 1962). The mean square

photocathode dark current noise for Af = 1 cps is given by

ir- 2eI, = AZEA”'k
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where Ak is the cathode area
jk is the dark current density.

The mean square value of the fundamental of a square wave signal current

is 2 2
Ik=(nrsr
7T’
where S is the cathode sensitivity

F is the DC value of the input flux prior to chopping
/2/m is the RMS value of the fundamental component of a square wave.

The cathode signal-to-dark noise ratio can be determined as

(5) - (Z5F)

2e Akjk

From Equation (23) the output signal-to-dark noise ratio becomes

§>=_gm:a (%L5$j
N Je

o 2 e A @2

The equivalent noise input, ENI, is defined as the value of input flux

necessary to give a unity signal-to-noise ratio. From Equation (25)

ENI « F

l sj e’ (1) @8
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From Equation (26), it is clear that for minimum equivalent noise input
the cathode sensitivity, S, and collection efficiency, ¢, should be as

large as possible while the cathode area, Ak’ dark emission , and dynode

’Jk
multiplication, o, should be as small as possible.
In the laboratory, the ENI can be determined by measuring the anode

dark current noise in a 1000 cps bandwidth and the anode sensitivity.

From Equation (24)

i.zeor G151, . 2eq +§Gel . 2eg 45 Ge A“S
(0‘"- |) CG"'- I) @". |) (27)

Let A = the anode sensitivity = Ia/F =QG€:Ik/F)= S¢G (amperes /(lumen).
(28)

Substituting Equations (27) and (28) into Equation (26) yields

ENT - EJL i
Sy € 2-25.¢G

For Af = 1000 cps,

ENI = 20

4.2-A
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VI. SIGNAL PROCESSING

The basic components of the scanning optical system are lens, slotted
reticle, and photomultiplier. A star field is focussed on the reticle, which
is fixed relative to the lens and photomultiplier. The entire éystem rotates;
consequently, the image of the star field moves across the slit. See Figure 1.
(The following results apply equally to systems in which the reticle moves
relative to a stationary lens and photomultiplier.) As the star field image
moves across the reticle, the amount of radiation reaching the photomultiplier
fluctuates with a corresponding fluctuation in its output. The output from a
bright star represents a signal; the output from the background radiation
represents noise.

There are several sources of randomness in the photomultiplier output.

The signal has a random component since photoelectric emission and electron
multiplication are stochastic in nature. Also, the photomultiplier produces

a dark current, which appears as shot noise in the output. The noise produced
by the background radiation has basically three '‘noise components.* First, it
has a high frequency component from the stochastic nature of photoelectric
emission and from the dark current. Second, it has a low frequency component
from the ’random' spatial distribution of the background stars. Third, the
background noise has a very low frequency component from the general variation

in background radiation over the scanning regiom.

* Noise from the background radiation is also discussed in Section III.

VI-1



FIGURE |: SCANNING SYSTEM

Vi-2



SIGNAL PROCESSING

The photomultiplier output must be '"processed" to discriminate against
the noise and detect the bright star signals, and to determine the time at
which the star is centered in the slit. In this section, we will describe
several processing techniques in detail. Signal detection and parameter esti-
mation have been studied intensively for radar and communication systems.
Several of the basic ideas can be used for scanning optical systems. On the
other hand, most of the specific results must be developed independently.
Processing techniques for scanning optical sensors have been studied previously
by Farrell and Zimmerman (1965), Harrington (1963), Kenimer and Walsh (1964),
Lillestrand and Carroll (1961). In the following paragraphs we extend these
earlier investigations by using more sophisticated noise and signal models
(subsection A). In addition, we discuss several new processing techniques
for detection (subsection B) and estimation of the star transit time (gub-

section C). Possible implementations are also discussed.
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A. Signal and Noise Models

Let I_(A) AX be the amount of radiation from the transiting star in
wavelength interval (A, A + A)A), entering a unit area of the optical aperture.
Assume IS(K) is expressed in photons per second. The optical system produces
an gberrated image. Assume it is Gaussian in shape; i.e. the radiation per

unit area on the reticle is given by

2Mg? C ol

AT I(A) AR exp |- ! x2+y2

in the wavelength interval (A, A + A\), where A is the aperture area, where
T(A) is the transmittance of the optical system, and where ¢ defines the
optical resolution., Let tS denote the time when the star is centered in the
slit, and TS the time required for the star to cross the slit. Then the star

radiation passing the slit at time t is
I(t,0)42 = ATQ)L, (DG H-1) A

in wavelength interval (A, A + AL), where

G(1) = 3(2+ L) - 3(L-T)

a 206

d(1) = L_ jT e X7 dx.

= —4
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With the star centered in the slit, eighty percent of the radiation passes

‘the slit when Ts/20 = 1.28. This slit width is defined as the image diameter D.
Radiation from weak stars forms the stellar background. The weak star

images are assumed to be randomly distributed across the reticle with a two-

dimensional Poisson distribution. Hence, the times at which weak stars enter

the slit form a stationary Poisson process. Let v denote the rate of weak

1 t2, t3, ... denote the times when weak stars are centered

in the slit. Let Ij(X) A\ be the amount of radiation from the jth

star transits, and t
weak star
in wavelength interval (A, A + ALN), entering a unit area of the optical
aperture. Assume Ij(k) is expressed in photons per second. The variation of
Ij(K) between successive stars, and the rate v, depend on the region of the
sky one is scanning. The total background radiation passing the slit at

time t is

[ (T, 2) 82 =AT@) ZI (2) G(+-1,) a2

in the wavelength interval (A, A + A)N).

In addition to stellar background, there may be an ambient background
radiation from zodiacal radiation or airglow, when observations are made from
Earth. Let I, (1) denote this ambient radiation. Assume I (A) is expressed
in photons per second entering a unit area of the aperture and a unit solid
angle. Let ¥ denote the solid angle formed by the slit. Then the total

radiation passing the slit at time t is

L(t,2) A2 + I (1,242 +A¢ T, (:\)Ax
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The radiation incident on the photocathode produces electron emissions.

These emissions form a non-stationary Poisson process with an instantaneous

pt) = [ Q@[ +1,42) + ATV T, (1] dA

where Q(A) is the quantum efficiency at wavelength k.* Substituting for

IS, Ib’ and I,, the rate becomes

) =AT; GlH-1,) + AZIGU-1) + AT,

ot X

3 *
where IS » I, , and I, are the effective intensities
i

I¥={ amy T 1M da
I = Q) T (%) da

D= @ T@T, () dr.

For the intensity and spectral characteristics of stellar radiation,
these assumptions are physically reasonable. The characteristics of

photoelectric emissions are discussed by L. Mandel (1958, 1959), and
in Section II of this report.
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Let 7_, T denote the Eimes at which photoelectron emissions

1 g2 s Ty
occur. Corresponding to the kth emission, one obtains a pulse at the output
of the photomultiplier. Let ay pk(t - Tk) denote the instantaneous current

at time t resulting from the emission. Assume

oo

_ ,ok(ﬂ dt = |

so that ay is the total charge resulting from the kth primary electron emission.
The charge ak varies between successive pulses since the electron multiplication
is random. Let fa(—) be the statistical density function of the pulse amplitude
distribution. The shape of the pulse pk(t) varies between successive pulses
since the relative arrival times of the secondary electrons in each cascade
fluctuate.

The photomultiplier dark current introduces additional noise. The dark
current is the sum of several currents; thermionic emission from the photo-
cathode, thermionic emission from the dynodes, and ohmic leakage. It can be
represented as shot noise. In particular, pulses are produced at random
times with random amplitudes. The mean pulse rate is assumed to be constant,

say 1,. Let dk pk(t - Tk) denote the instantaneous current at time t resulting

d

from the kth

pulse. Assume

oo

[ gt =1

so that ay is the charge in the kth pulse. Note that the pulse shape varies.
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Let fd(-) be the statistical density functibn of the pulse amplitude distribu-
tion. The statistical characteristics of the output fromthe photomultiplier are
discussed in detail by Engstrom (1947) and Tusting (1962); also see Section V
of this report. |

The composite output from the photomultiplier is filtered to improve the
signal-to-noise relationship. Assume the filter has an impulse response w(t).
In cases of interest w(t) has a much longer duration than pk(t) and 5k(t).

Hence, the filter output is simply,
X(1) = %akw(*-’?k\ + { dy wH-'r‘k)

where the Tk's form a non-stationary Poisson process with an instantaneous
rate u(t), and where the ;k's form a stationary Poisson process with rate I3-
In certain situations, X(t) can be approximated by a non-~stationary Gaussian
process. This approximation is helpful in solving certain more complicated
problems. Parzen (1962) page 157, and Rice (1944) page 305 develop this
result in some detail.

With these models for the signal and noise, we can investigate various

detection techniques. This is the subject of the following paragraphs.
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B. Star Detection Tecﬁniques

The function of a detection technique is to discriminate between desired
signals and undesired signals. The optimum detection technique depends on
the characteristics of the signals. In scanning optical systems, we encounter
three operating situations.

In the first situation, the detection technique must discriminate against
"false" star detections, i.e. detections resulting from dark current, zodiacal
light, "very weak' stars ( stars with intensities several stellar magnitudes
below that of the weakest star of interest), and radiation from the atmosphere,
when observations are made from Earth. The sporatic detections of ''weak'" stars
(i.e. stars with stellar magnitudes near that of the weakest star of interest)
are acceptable in this operating situation. The optimum technique maximizes
the probability of detecting the weakest star of interest with a fixed proba-
bility of detecting a false star. In this case, the output of the photo-
multiplier forms a stationary random process in the absence of a star signal.

In the second operating situation, the detection technique must discrimi-
nate against weak stars. TFalse star detections can be neglected. The stars
of interest are relatively bright. Hence, weak star detections are widely
spaced in time and are statistically independent. The optimum technique
maximizes the probability of detecting the weakest star of interest with a
fixed probability of detecting the brightest weak star that we must discrimi-
nate against.

In the third operating situation the detection technique must discriminate

against weak stars; but in this case, the detections are not independent.
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The stars of interest are relatively weak. The priﬁary cause of variagbility
in the photomultiplier output (in the absence of bright stars) is the varia-
bility in the spatial distribution of weak stars. In this situation the goal
is to select a detection filter that maximizes the ratio of the output signal
level to output rms noise level. One can formally derive a detection
technique that is optimum for the criterion used in the first situation. The
technique is complex; it is impractical for real applications.

In the following paragraphs these three operating situations will be
considered in detail. The optimum techniques will be developed. 1In applying
these results, one must estimate the relative significance of various inter-

ferring signals, and select the appropriate detection technique.

1. Discrimination Against False Star Detections

To simplify the discussion we will assume that the star transit time ts
is known. Later this assumption will be relaxed. The output of the photo-
multiplier is observed for a period -T + ts to T + ts, with 2T much larger
than the time required for the star to cross the slit. Assume that at most,
one bright star crosses the slit in this period, at ts. Let v, < vy <.l
represent the times at which pulses are observed at the output of the photo-
multiplier; let bl’ b2, ... represent their amplitudes. The decision as to
whether or not a star is present is based on the number of pulses observed N,
PERREEY VN) and the amplitudes (bl, b2, cees bN). There is

no practical way of using the pulse shapes to discriminate between the star

the times (vl, \Y

signal and noise.
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Detection is basically a statistical problem of testing the hypothesis
%

that "no star is present, i.e. IS = 0," as opposed to '"a star is present with
* % '
intensity 1 = Iso ." There are two types of errors: Type I--the star is
s

"detected" when it is not present, Type II--the star is not detected when it

is present, see Figure 2. In practice, false star detections can be eliminated
by comparison to star charts. On the other hand, if a star is missed, the
system accuracy is reduced; and it may be impossible to obtain the required
attitude estimates. Hence, the goal is to select a detection technique that
minimizes the probability of a Type II for a fixed probability of a Type 1
error.

The optimum detection techmnique is based on the joint likelihood function

oo
w

of N, Vi v2, ooy V b b ey bN given IS and ts. Let

XL (N, Vs oeees Vo by eees by | I, ts) denote this function. Let ./ denote

the ratio

J = I(N:VU"- )Vﬂgbs T ’bN‘I;O _,Ts)
I(N’V' » HVy )bl) ’bN \ 0:1}\

The optimum detection technique is the following. If J is larger than a
specified constant Cp’ a star is present. If D) is less than Cp, a star is
not present, The constant Cp is selected so that the probability of a Type I
error is P. The probability of a Type II error is minimized with this tech-
nique. The proof of optimality is given in subsection G of this section. In
the following paragraphs, explicit equations are derived for the likelihood

function £ and the test statistic [J .
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STATE OF NATURE

NO STAR PRESENT

STAR PRESENT

NO STAR TYPE 1O
PRESENT ERROR
STAR TYPE I

PRESENT ERROR

FIGURE 2

DETECTION ERRORS
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One can show that the joint density function of the vj's and b 's condi-
J

tional on observing N pulses at the output of the photomultiplier is*
N AT vl + 166
'iif;] ' [4‘1(\G) o k& + ];fﬁd LU-] 5
J=t
where N is the average number of pulses observed

. T
v =L“(ﬂ dt +2TT, .

Therefore, the joint likelihood function is

x = M) + Lk €.

J=|

Since we are concerned with false star detections the effective back-

ground radiation is assumed to be constant; the quantity
»*
AT 17G6(1-1,)
[ ’

in p(t) can be replaced by its average value

AT VT .

* The derivation follows closely one given by Parzen (1962), p. 139ff.
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ot

Since 2T is assumed to be much larger than T ,"

-
[ otr-1)dt ~5 Glt-+) dt =TT, .
27 e

The test statistic .J becomes

9= ﬂ [ALoCly ) +ATUT AT, ] £.(b) + Tafy(b)) oo
=L DATDVT, *ARTII £ () + 1,4, (b)) } ‘

Note that J is independent of the duration of observation 2T. The detection

technique based on f) is equivalent to a technique based on the logarithm of

J . On the other hand, it is easier to implement a technique based on the

logarithm. Let

N

J'= 1nJ +AI,T, = Z In}plh)) Gly;-1) +1}

where

P(bj) — — AI;p-Fa(bj)
AT VT, +AYICIE (b)) + I 5 (b))

%
The constant AIso TS does not change the technique since ' is compared to

a constant, say C'p.

* A derivation is given by Farrell and Zimmerman (1965).
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The general term in 7’

In[ P(b) G(v) +1]

describes how pulses occurring at different times with various amplitudes
influence the detection decision. First, consider the factor p(b). The

ities AL, AL v T_ + APl
quantities so ° p VI vI

of the star radiation, interferring radiation, and dark current. Graphs of

,» and Id represent the effective intensities

oo

% % * . s
AT, fa(b), (AL, v T, + AYI, ] fa§b), and I, fd(b) appear in Figure 3; the
corresponding graph of p(b) is in Figure 4. The magnitude and shape of p(b)
changes significantly from one photomultiplier to another. There is a

threshold value of b, say bt’ such that p(b) is "small" for wvalues of b < bt.

The effect of this threshold is to discriminate against pulses from secondary

dynodes and ohmic leakage. The function G(v) is a simple bell-shaped function.

Note that
In[p(BYG(V) +11 = plb) G(v)
when
e(b) G(v) L.,2
and that

InTemYGH) +1] = Inp) + In6(<)
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RELATIVE MAGNITUDE

A1, f,(b)

\ p(b)=

I,f,(b)

g

"
AIso fu (b)

[ATivT, + AYI)] 1, (b) +1,1,(b)

[AT5 v T, + AVI] ], (b)

VALUE OF b

FIGURE 3. RELATIVE MAGNITUDE OF TERMS IN p (b)

Vi-16

T



s

a—"—‘—-—-
/”
,/
e
/ .
,7 DIM BACKGROUND
G /
Q {
(T /
) !
!
m !
> / BRIGHT BACKGROUND
< /
> |
/
by
VALUE OF b

FIGURE 4. FUNCTIONAL FORM OF p(b)

VI-17



'Y}"ﬁ’ T

SIGNAL PROCESSING

when

Pib) G(v) > 10.

The term

In Lp(b)Gcv) +1]

is graphed in Figure 5. From these remarks, we find that J', and conse-
quently the detection, is only influenced by large pulses near tS.

In most situations the star transit time t 1is unknown. Then the
s

detection technique becomes the following. If the value of

I'(4) = £ in{ole) 60y-1) +1]

J=1

exceeds C' continuously between times tl and tZ’ a star is present. The

time t Dbetween t_ and t2 at whieh _7'(t) achieves its maximum value is the
s

most likely value of tes i.e. it is the maximum likelihood estimate of ts."
This detection technique is a likelihood ratio test with parameter £,
The quantity _7'(t) as a function of time can be interpreted as the

output of a non-linear invariant filter. The response to an impulse at

* See Willis (1962), p. 360.

%%  See Wilks (1962), p. 402fEf.
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time v with amplitude b is

In\-_e(b\ G(t-v) +1] .

This response is graphed in Figure 6. It is not practical to implement the
filter in the above form. A reasonable approximation is illustrated in
Figure 7. The amplitudes of the input pulse train (bl’ b2, ...) are modified
by a non-linear amplifier. Strong pulses are amplified; weak pulses are at-

tenuated. The jth input pulse becomes a pulse with amplitude

Inl e(b;) G(1") + 1]
Infe(k) G(1') + 1]

The parameters b' and t' are defined below. The modified pulse is then

filtered to produce an output

|n[P(bJ)G(+,)+(] | ’ +-u. .
In{e(v) G(+7) + (] nLelt) Gt -v il

This approximation is also graphed in Figure 6. Note that the approximation

equals the optimum response when t - Vj = t' (for all bj) and when bj =b'!

(for all t). The parameter t' and b' are selected to minimize the separation"
between the correct function and the approximation. In some situations, it

may be adequate to delete low level pulses, below bt’ and normalize pulses
above bt to unity. This type of normalization was used by Farrell and

Zimmerman (1965). Possible implementations are discussed in Subsection VI.E.
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IMPULSE RESPONSE, w(t)

c.\ '

in[ p(b) G(1)+1]

S 0
In[ p(b') G(+")+1] in[pwrst+

| 1

T I

In [ p(B)G(1) +1]

4 .8 1.2 1.6 20
TIME /STAR TRANSIT TIME

FIGURE 6 . IMPULSE RESPONSE AND APPROXIMATION
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IMPULSE RESPONSE
wit) =in[ p(b)G(1) +1]

NON LINEAR
PHOTO - WIDE BAND LINEAR
MULTIPLIER AMPLIFIER ) FILTER
X (1)
OUTPUT !
In[p(b)G(1)+ 1]
In[ p(6") Glt')+1]
>
b’ INPUT

FIGURE 7. FILTERING TECHNIQUE

.| THRESHOLD

DETECTION
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The impulse response

wt) = in[p)eH) +1]

is graphed in Figure 8 for several values of slit width with a fixed image
diameter. 1In Figure 9, w(t) is graphed for several values of image diameter
with a fixed slit width. 1In Figure 10, w(t) is graphed for several values of
p(b’) with fixed image diameter and slit width. When the slit width is
comparagble to the image diameter, w(t) can be approximated by a simple Gaussian
impulse response. This approximation will be used extensively in the following
discussion. Note that the filter output is insensitive to changes in the

input pulse shapes, pk(t) and ﬁk(t), since the filter response time is much
longer than the duration of the input pulses.

The remaining problem is to determine the probability of detection with a
detection threshold C‘p. The probability of detection is the probability that
the filter output, say X(t), exceeds C'p. The probability of detection is
greater than the probability that x(ts) > C'p. In practice, this lower bound
is close to the actual probability of detection. We will use this bound as
the probability of detection. Since the distribution of x(ts) cannot be
expressed in closed form, it is convenient to evaluate the probability of
detection by assuming X (tS) has a gamma distribution with the same mean and
variance as X(ts).

The mean and variance of X(ts) can be expressed in terms of the Fourier

transforms of G(t) and w(t), denoted by {J(f) and W(f). The mean of x(ts) is
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E X)) = a AT | B W) df

+LaAT VT, +& AT +31,1W(0) |

The variance of X(t ) is
]

S

Var X(f) = &ALy | 6 [wh]® dt

+[GEATTE + EAPT, + PL] [ \Wif)P s,

Assume w(t) is a Gaussian-shaped impulse response function, i.e.,

wt) = w, e 287

Then the Fourier transform is

2r2
W) = Va7 w, e-zﬂ'"(/ﬁz

fo

The half-power frequency is .133f,. Also one can show that
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- 2(nfe)?

) =L sin(nfT) e
'n-'F

The mean and variance can now be evaluated in closed form. Namely,

2Vl + o2 £?
+ 2w |GAT T +aAYT, +d I ] we /£,

E X(f) = Vew aAI:\_:_g {\—2@( - ﬂ

Var X(T) = Vrr O—‘?AI {‘ - 2§ 24\/ +o-2'F ﬂ

+V/or [a‘zA—T_:v_l; v+ PAPTT + c_\_ZId_]w}/{o

Using this mean and variance, we can determine the probability of detecting

kS .
a star with intensity Isa and the probability of a false star detection. In

o

the first case E X and Var X are evaluated with ISA =1 °, in the second case
S0

with I = 0. The expected number of false star detections is approximately
s
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equal to scan period divided by TS times the probability of a false star
detection.

As mentioned previously, the ambient background radiation passing the
slit fluctuates during one scan period, in some cases more than an order of
magnitude. Consequently, to maintain the probability of detecting a third
magnitude star at .9, for example, we must change the detection threshold C'

during the scan. An analog method is described in Subsection VI.E,

2. Discrimination Against Independent Weak Star Detections

In this subsection we will consider a second operating situation in
which the detection technique must discriminate against independent weak star
detections. Falselstar detections can be neglected. The effective intensity
of the interferring radiation and dark current is much less than the star
intensities. The optimum technique maximizes the probability of detecting
the weakest star of interest, with a fixed probability of detecting the
brightest weak star that we must discriminate against.

Many of the results on false-star detections can be applied to weak-star

detections. The optimum technique is based on the ratio

J - I( N;Vn"' )VN,bt,"‘ale I:o >1-5)
f{N,v,,---)VN,b,,---,bA,lI* t)

sy 2

* *
where Iso is the intensity of the weakest star of interest, and where I, ; is

the intensity of the brightest weak star that we must discriminate against.

If 7 is larger than a specified constant Cp’ a star is present. If 7 is
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less than Cp, a star is not present. The constant Cp is selected so that the
probability of detecting a star with intensity Isl* is P. The probability of
detecting a star with intensity Is * is then maximized. The proof of optimality
is very similar to that given in subsection G of this section.

The detection technique based on J is equivalent to a technique based

on the logarithm of 7 . Substituting for the likelihood function, we obtain

J'z 1nd + AT, -TIDT, =

N » "
1nJEAL Gl -1) +AR VT + AP 1L, (b)) +14£4(b))
LATS 6Oy = 1) + ATRVTs +ARTIN £, (b)) + T4, (1)

Since ninety-eight percent of the signal pulses occur in the interval

(t

significant degradation in the detection technique. Further, the terms in-

- Ts’ tS + TS), pulses for which |v. - t > TS can be ignored with no

s J S

volving Afg; V TS and AJPIO* can be deleted because the intensity of the
interferring radiation is assumed to be much less than the star intensity,
nominally by a factor one hundred. Note that G(TS) ~ .1 when the slit width
is equal to the blur circle diameter. Also, the value of 7' is influenced
only by large ''large’ pulses. The terms in 7 ' corresponding to these pulses

have essentially the same magnitude, namely

In (I3, /15 .
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The detection technique based on 7 ' can be implemented with a wide-band
non-linear amplifier followed by a linear filter with a rectangular impulse
response. The optimum holding time depends on thé relative magnitude of the
signal and noise. This approximation to 7' also minimizes the relative error
in the star intensity measurements; see Subsection VI.D.
3. Discrimination Against Dependent Weak Star Detections

In this subsection we will consider a third operating situation in which
the detection technique must discriminate against dependent weak star detec-
tions. The stars of interest are relatively dim. Consequently, the "weak
stars'" are closely spaced, and detections are not independent of one another.
The primary cause of variability in the photomultiplier output is the varia-
bility in the spatial distribution of the weak stars.* The goal is to select
a detection filter that maximizes the ratio of the output signal level to the
output rms noise level.

Let w(t) denote the impulse response of the filter. Then the mean

signal level at the output of the detection filter is

E X)) = AL} | D) W) af.

% The noise generated by scanning a 'random" stellar background is similar
to radar clutter noise, see Urkowitz (1953) and Wainstein and Zubakov
(1962) p. 110.
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In the absence of a signal, the rms variation of the output about the dc level

is the square root of

G2 AT o] 1w | B0 12df

-0

SL@A(TYT +210) + P \weoRds,

Therefore, the optimum filter frequemncy response “W(f) is one that maximizes

the ratio

(AT 3w df]’

f (G2R T v D)2+ PAT wT,+ EAYT; +FL) w12
We can show that the ratio is minimized with*

aAIX yf) -
a* KT v IBMN2 + AT VT, +aTAPI +F 1,

wi) =

* Wainstein and Zubakov (1962), pp. 82, 83.
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The first term in the denominator corresponds to the scanning noise generated
by scanning the background stars. 1In Figure 11, the response is illustrated
“for several levels of scanning noise. Note that for low noise levelsW(f) is

proportional to Y(f). The output signal-to-noise ratio is

1
¥ @RIRdI? df &
J @RIToIUEN2 + AT T, + FALI] + 7T,

The probability of detection can be evaluated using a gamma distribution, as
described above.

The optimum filter to discriminate against dependent weak star detections
is a band-pass filter. On the other hand, a low-pass filter is best for false

star detections. For independent weak star detections, the optimum filter has
sin 4w Tg f |
mf

a frequency response function
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C. Accuracy of Image Location

In the discussion on false star detections, we point out that the maximum
likelihood estimate of te is the time at which the filter output achieves its
maximum value. Also, one can estimate tg with the average of the first and
last time that the filter output crosses a fixed threshold. 1In this section,
we will determine the variance of both estimates. Special cases are considered
in detail using a Gaussian impulse response function. In many cases of inter-
est, the optimum impulse response can be approximated by a Gaussian impulse
response, see Figures 8, 9, and 10. At the end of this section the effect of
angle quantization and image instability,such as that caused by atmospheric

seeing, is considered.

1. Accuracy of Peak-Value Technique
Let ty denote the time at which the filter output X(t) achieves its
maximum value. The maximazation is over an interval "around' a star detection;

~

tg is determined for each star detection. In the following paragraphs, a

general expression for the variance of t is derived. It is evaluated for a
]

Gaussian impulse response in closed form.

To determine the variance of t , it is convenient to expand the filter
s

output X(t) in a power series about ts; namely
X(1) = X(5) +X'() (-1) + K'Y (1-1)° + ol-1,)*

For the following discussion, it is sufficient that the filter impulse w(t)
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have a bound third order derivative. Since X(t) achieves its maximum value

~

at tS, the first order derivative must be zero, i.e.,
X'(1) = X'(5) + X"(1) (3,- 1) + o(§-t)2 =0.

In general, the filter has an impulse response whose 'duration" is comparable
to the time the star is in the slit, Hence, X(t) is slowly changing like

E X(t); X(t) is esséntially quadratic in an interval about t_ . Consequently,

!
T~ 1t - X' (1)
5~ S n
X ()
If one obtains a ''large" number of primary photoelectrons from the transiting

star, the variance of X”(ts) is small relative to its mean. Using a simple

first order approximation, one observes that

Lat - X) [ o X W-EXW)) Ly _ X(t)
EX (1) EX"(ty)y 47 * EX'(T)

when the relative variation of X"(ts) is small. 1In other words, the shape
of the quadratic approximation essentially fixed. The maximum is displaced

e
w

in time and amplitude. Then the variance of tS is

Var ?s ~ Var x(”s)/fE X"('l'sﬂz

* A similar result is obtained by Halstrom (1964), p. 284, for two-
dimensional images.
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it
s

Note that this equation is valid when X(t) is quadratic near tS and when

Vor X'(1) <« TEX"(1,)]%.

The second condition is discussed later in more detail.
To evaluate the variance of ts’ it is necessary to find the mean of

X”(ts) and the variance of X'(ts). In general, the jth derivative of X(t) is

w94y = % o WDty 4 Zk di wi(t-3,)

where a'k and d'k are the pulse amplitudes at the output of the non-linear

amplifier, see Figure 7, and where w(t) is the impulse response functionm.

The mean and variance of X(J)(ts) are

E Xty = FATL[ Ciznf) BOWE) df
Var XP(1) = @ZAT; J..G(T)[w”’(’f)]ad’r
+ T A T v | @nf) 18P 1W()]? of

+[@ AT T, + 81 + 21,1 [ (e 1w () Paf

where j = 1, 2.
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Assume w(t) is a Gaussian-shaped impulse response function, i.e.,

1 2
w (1) e 2 (1)

W,

Note that —211'2{2/{2
W)= Y e "
o

and that half-power frequency is .133f . Also one can show that

2
W) = L sintefT) €27

’TT—

(3

The mean of X (ts) becomes

: [ = i} 2
EX(’)(TS\ = (-2miY a'AI:I £ [sin 4§ T, 62“2‘724 ]

o f

(4
VET:C——W" = /{’z} df

The means of all odd order derivatives are zero. Hence, the expected value

A

of t 1is ts. The mean of the second derivative is

s N e
E X" (TA =-o AIs Wo ‘ C—B/z € 4
{oTsz
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where

C = (¥;:r;)z
(£, o) +1

A detailed evaluation is presented in subsection VI.F.2. Note that 0 <c¢c <1.

The variance of X'(ts) becomes

Qe

2
Var X'(t,) = azAT1] J G w2 (1£3)° € b5 at

- o _ 2 2
4 —a,ZAZ ac-z.vj (2‘\'7"?):1: _,— sin(frﬂ;) eZ('ﬂ""d‘3 1
b J o o4

22 2
[ 485w e

[ A(TET, + 9T2) + é'_’Id]f(anﬂ"‘ [v:?«r‘w,,
e f

o

2¢c? 2
o2 /‘ff‘l df.

In subsection VI.F.3, these integrals are evaluated, and
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Var X'(T$> = aﬁAI:.W:‘Fo F_n(-l;'co JU”F")

g Aa( iy ) (I3 V) wi F(T,4, of,)

o

e [a® A(TVT « 917) + L)W,
z2

where the functions F1 and F2 are

F(«,@) = -é—[‘ﬁ? - Zﬁ@(\&-—j?ﬁ>

F @, =ﬁf%—g?[' -2—'% e**’(‘i ,:;Zﬂ
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Note that F1 and F2 are unitless; also the intensity ratio Ib*Z/Ib* and the
average intensity Ib* v TS have been previously evaluated in subsection III.C.

With these results one can evaluate

A

Var 1'5 ~ Var X'“.s‘/[ EX"(TS)]z .

It remains to show that the standard deviation of X”(ts) is small
relative to its mean. To do this, an upper bound will be derived for Var X"(ts).
The ratio of the bound to [E’X"(ts)]2 is small for cases of interest. Also,
we will show that the bound on the variance is close to the true value.

The expression for Var X”(ts) is the sum of three integrals; upper bounds

will be derived for each term. The first term is

o ATy | o) [wi(H]¥dt .

Since 0 < G(t) <1, this term is bounded by

s

TALY | (2 1 W (F)2d§ =

3
2 Vi ar AL £ Wz,

The function G(t) is significant for t < 2oc. On the other hand, [w'-"(t)]2 is
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zero at t = 1/f,. In most cases of interest, o > 1/f . Hence, the bound is
near the true value.

The second term in Var X'"(tg) is

2RI e BE WP Jf

By replacing

) sin ('f‘r‘FTs)
™+

with its maximum value T , in the expression for lG(f)I, one obtains an upper
s

bound: wviz.,

— - 2 2
o °A° I:"‘vj (2¢r¥)"Tsa e 4mie) 21 we e'4(1hc”°)a{

(<]

p _Foz

—
-

2 vm E ATV g ) (e e g2 )

When the diameter of the star image and slit width are comparable, G(t) can be
approximated by a Gaussian density function. Hence, the Fourier transform of
G(t) is proportional to W(f) and the above bound is close to the true value.

The third term in Var X"(ts) can be evaluated explicitly; namely,
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[SRA(TIVT, + L) + L) [ amb i lw ()12 48 =

2 va[am AT, + eI 7L e

Combining the four bounds one obtains
" A 3 — e 3 2
Var X (1'5\ = 3 V1 o' Als“—o w,

3 -—fl 27¥%2 2 3 2 §:
+ Z Ymra A Ib st '\"o W, (H‘U'Z'F:)Z

+ 3 ¥ [aRA (T LT+ 9T5) + 7L 6wz

The problem is to show that

Var X"(1,) << [EX"(t,)]?
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and consequently that

Var fy = Var X'(4) /[EX" ()17

By direct substitution one can show that

Var'X”(Ts) £ 3 VT “-“TS)S C,_sec/"-
LEX"(t))* 4 AI]T, ‘
a'z 3 A'rs .Tz i—: v s 1 _
ar’ T: I;’ QI wz{-z);’l
p ot Ik, ot YL, & 2
>t Is a I: 'oT?'chAI:

The terms have been arranged for easy evaluation. The significance of various
terms are as follows:
(i) AIS*TS is the mean number of photoelectrons emitted during the
star transit time.
(ii) a2 ar® depends on the photomultiplier characteristics.

(iii) The ratio * is determined by the variability of the

stellar background.*

7 This quantity is evaluated in subsection III.C.
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iv I,* v T_/I_* is the ratio of the average stellar background in
b s'*s g g
4

the slit to the star radiation entering the sensor.

v I_*/1 * is the ratio of the ambient radiation entering the
0 s =4

sensor to the star radiation entering the sensor.
(vi) EZ I@/;TZ AIS* is the ratio of the ac power in the dark current

to the ac power in the star signal with the slit removed.

To use the basic equation

Var f = Var X'(t) / [EX"(+,)]?

one must verify that

Var X{t,) << | EX"4:)]°

and that X(t) is quadratic near ts. Implementations of this technique of

measuring ty are described in subsection VI.E.

2. Accuracy of Threshold Technique

The "threshold technique" of estimating the time at which the star is
centered in the slit is based on threshold crossings. In particular, an
amplitude threshold is selected, say x,. Assume X(t) crosses x, at times ug
and u,. The estimate of ts is then

2
'-f-; =1 (v +v,).

1
2

ota

% This quantity is evaluated in subsection III.C.
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Note that x, is not necessarily the same threshold as used for detection, c'

To determine the variance of ?;, it is convenient to expand the filter
output X(t) in a power series. Let El and Gé denote the times at which
E x(t) = x,, and Gl < EE. The expansion of X(t) about Gl is

X =XG) +X(@) (+-5) + ---

Since X(t) crosses x, at us

X () = x,= X(T)+X'(3,) (v, -0,) + -~

In general, the filter has an impulse response whose duration is comparable
to the time the star is in the slit. Hence, X(t) is slowly changing like

E X(t); X(t) is essentially linear in an interval about El' Consequently,

-

~ U X ")((:3
\J' ~ \J| + o : \)
X))
If one obtains a ''large' number of primary photoelectrons from the transiting
star, the variance of X'(El) is small relative to its mean. Using a simple

first order approximation, one observes that

U, x T, 4 x, - X(T,) - X'(8) - EX'(@)
EX'(T) EX'(T,)
U, + X, —X(7,)
EX'(9)
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In other words, the slope of the linear approximation is essentially fixed;

its intercept changes. Similarly, one can show that

U —D + Xo —X(Uz\ .
2 2 EX(T,)

~

Hence, the variance of ts is

Vor Tt ~ Var X(U"-)-X(G'\ —
> 2 EX'(9,)

Var X(9) - Cov]X(5), X(5,)]
2L EX(T)Y]?

Note that this equation is valid when X(t) is linear near El’ and when

Var X(5,) << TEX'(T)]? .
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The second condition is discussed in more detail later.

To evaluate the variance of'?:“S it is necessary to find the variance of

X(El), the covariance between X(El) and X(Gé), and the mean of X'(Ei). One

can show directly that

VarX(t) = ATV [ G(+) [wt-t;-1)]) dt’
s @I 1w 12 )2 de

a2 (TP T, + R )+ 321 | 1w ) 2a 6

EX'(4) = -Z’R'AI:ET'J £ sin{t'ﬂ‘ﬂﬁ'-’r,)—l W(‘Hﬁ("’)o\-‘:

Assume w(t) is a Gaussian-shaped impulse response function, i.e.

wlt) = w, C-“Z.H{JZ
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and -2 [ 2
W(E) = NEm we €T TR

s

o

The variance of X(t) and the mean of X'(t) can be evaluated in closed form.

Var X(f) = A]'-: ;_'z —Wg F3(Ts'po :W'Fo >(-t"1-s)+‘ox

(-]

+ avaAaI—:av V.\‘:_l;': F T A, ,o¥%.)

o

Va2 MTFuT, + PT*) +d2 1| w2 /4,

where

Folet,8,%) = \’_;E_ I@ (%) - Q(—:f_/'zl__?—__—j_p’-)

(d\/e_-i'\{) i’ XY ]

v|/214-‘32 "J\/i.+ pz.
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F,(¢,8) = 4 | L _ -
+%F [2 q)('\/2(\+(32)]

"2 VEE VZCEE [1- exp(-f 25)]

The detail evaluations of the integrals are presented in subsection VI.F.4.

Further, we show that

EXH) = A& we o, {_ Ffﬁ-fsﬂ-"r,/z)z]
VIi+ a2 2({faz+1)

— QXPI_. 'Foa (+‘+5—Ts/2>2-} E
2(f2a% + 1)

in subsection VI.F.5. In addition, the covariance between X(tl) and X(t2>’
for arbitrary times tl and ty,, can be expressed in terms of the variance of

X(t); namely,

e— #’ -Foz(-’.l —12)2

Cov(X(t),X(1)) = Var X (1)

See subsection VI.F.6.
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It remains to show that the standard deviation of X'(Ei) is small

relative to its mean. The variance of X'(t) can be evaluated directly; it is

Var X'(1) = AT, o Wi, F(T,6, 0§, ,(+-1)F,)
+ AT TRV T, w2 E (Tif, , o f,)

+ X [GRA(T, T, +715) + JF1 1 w24,

where
F(a,8,Y) = ﬁ{ alz+¥ \ _ &[-2/2+¥
* e 4 2 \/7_+@2) é( \’T/z__—+_p_2>

k) Al

- ( _ _ (a/z-¥)?
2(2p2+ ')”Ziwz ¥ exp[ 2(l/z + gz)]

(/2 +¥) ex,o{.. (/2 +¥)° } |
2(1/2 +g?%)
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The details are presented in subsection VI.F.7.

To use the basic equation

Varf, = Var X(@) - CovlX(3),X(5)]
| 2[EX"(u))*

one must verify that
Var X'(3)) & LEX'(5)1%

and that X(t) is linear 'mear" . Possible implementations of the threshold

1

technique are discussed in Section VI.E.

3. Quantization Error

In most applications the output of the sensor is expressed in digital
form and used in a computer. Consequently, there is a quantization error in
addition to random errors. 1In some applications, the sensor output is the
star transit time obtained from a digital clock. 1In other applications, the
sensor output is the angular position of the reticle when a star is centered
in the slit; the angle is measured with an angle encoder. 1In the following
discussion, the first application will be considered. The results also apply
to applications in which an angle encoder is used.

The relation between the input and output of the "time encoder'" are

illustrated in Figure 12. The input time estimate tS is quantized to obtain

~

Qt . Note that A is the quantization interval. The rms error is then
s
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oo , . ,/Z
e = | [ @r-4,? (12 at

where M= E ?S
1)7- = Var ‘/\'\5 .

~

To estimate the effect of quantization we have assumed tS is normally dis-
tributed. Also, we will assume that there is no systematic error in measuring

tg, ieeey EtS = t . We can show directly that

=T (t-t,+; 2[ To-tei0 |\ a\ _ gt +ia
:Z:“ s +jA) é( ; +_2_;)) @( ;J ,EA_;_)

The factor in the brackets is functionally identical to G(t) with TS replaced

with A and o replaced by v. Note that as v approaches zero, e2 approaches

When A < 0, we can bound ez. Farrell and Zimmerman (1965) have shown

that

q,(’ro-’rsﬂA +_A_) _ @(TO—TSHL\. ___4_5_\ ~

Py 2V Y% 2V
_é;_ 'ro - -rs -+ j A \)
5 A
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€' ¥ (to-t +;B)

j=-~e0

4 ¢(T°“1's*iA \
Y, by
Note that as A approacheszero as ¢ approaches g”, i.e., the summation converges
to an integral.

4.

Effect of Atmospheric Seeing
time ts varies from scan to scan.

1f observations are made from Earth, atmospheric seeing causes the star
images to move randomly in the field of view.

Consequently, a star transit
with respect to ts to obtain the total rms error:
error, and seeing error.

In such a situation we must average ¢

random error, quantization
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D. Accuracy of Intensity Measurement

The relative error in the intensity measurement is the ratio of the rms
noise level to signal level when the output signal is a maximum. 1In this
section the background radiation is assumed to be homogeneous. We use the
model described in subsection VI.B.l for false star detections. The relative

error is

L

J;[_EFA [LG(H) +FAT T, + FAIT* + F1) WA at A

FAT o(t) w(t) dt

This ratio is minimized when

W(ﬂ - aAI;" G(1) B
FATIGH) + AT VT, + ZZAYT. + 321,
The corresponding minimum relative error is
J_oPALZG(M) + AL vTs + FAPIT + &P T,

If the magnitude of the interferring radiation and dark current are small

(-

“Vp

relative to the star signal, the impulse response w(t) is essentially constant
over a long interval, relative to the star transit time TS. Since 98 percent

of the signal pulses occur in the interval (tS - Ts’ t + TS), we can restrict

S

the effective duration of the impulse response to ZTS without a significant

loss of information. Hence, the optimum filter can be approximated by a

* See discussion by Wainstein and Zubakov (1962), pp. 82, 83.
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filter which has a rectangular impulse response. Note that a filter which
minimizes the relative error in the intensity measurement is optimum in
discrimination against weak star detections. See subsection VI.B.2. With a
high signal-to-noise ratio, the minimum relative error is inversely proportional
to the square root of the mean number of primary photoelectrons generated by

B *
the star: viz., AIS Ts'

Assume w(t) is a rectangular impulse response, i.e.,
W t\ ¢ T/
w('ﬂ = o | G
0 \'H > T/Z
where T is the duration of the impulse response function. Then the relative

intensity error becomes

—_— T e AT 3 12 "
{O,ZAIJ G dt +TRAT VT, + & APT: +d°1,] }

-1/2

__,\I*_j771c}
a Al () 4t
-T/2

We can select a holding time T which minimizes the relative error by differ-
entiating. The best value of T is the value which satisfies the following

equation,

| = G(TR) | AL 2T
QAL VT + FAYL + 2T, (T2 |
;172
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E. Implementation of Signal Processing Technique

The techniques described in the preceding paragraphs have relatively
simple implementations. We will present several electronic designs suitable
for satellite systems. The basic functions of the electronic processing
are signal filtering, detection of bright stars, discrimination against
weak stars, measurement of image position, and measurement of signal
intensity. These functions are related in Figure 13. The intensity and
position measurements are not initiated until a detection is obtained.

Also the detection threshold is selected for optimum discrimination against
weak stars. Figure 14shows the electronics block diagram for the peak-
value method, and Figure 15 shows the block diagram for the threshold

method.

1. Signal Filtering

A typical output signal from a photomultiplier is shown in Figure 16a,
This signal is characterized by many randomly occurring small amplitude
noise pulses,and signal pulses whose amplitudes vary randomly. The duration
of a typical elementary anode current pulse due to a single photocathode
emission has been experimentally determined as 10 x 10-9 second, Tanasescu
(1960). The width of the pulse is largely determined by the RC time constant
of the photomultiplier output circuit., The voltage amplitude of the pulse
is approximately determined by AV = AQ/Cs where CS is the stray capacitance
at the output of the photomultiplier and AQ is the total charge collected

at the anode. If the gain of the photomultiplier is 106, then one
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photoelectron will cause a burst of approximately 106 electrons to be

collected at the anode. So for a typical CS = 10_11 farads and

AQ =~ 106 x 1.6 x 10-.19 coulombs, AV = 16 millivolts. With a one inch
optical aperture, there is approximately 106 photons per second arriving

at the photocathode for a zero magnitude star. Assuming a cathode quantum
efficiency of 0.1 electron per photon, the average photoelectron rate
becomes 105 electrons per second. To minimize the possiblity of overlapping
anode pulses, the bandwidth of the anode output circuit and amplifier

should be much greater than the expected average frequency of anode

pulses. 1If we choose a factor of 100, the required bandwidth becomes

107 cycles per second. The half-power cut-off frequency for an RC low

pass filter is f 1/2nRC, so the input resistance to the amplifier must

1/1o7xzrrx10'11 = 1.59 x 10° ohms for c, = 107 farads.

be Rin < 1/f2TrCS
In subsection VI.B, we show that 'detectability' is optimized by

discriminating against the small amplitude noise pulses and by

reducing the variation of the signal pulses. The effect of noise can

be reduced by choosing an amplifier threshold level, Et’ such that a

large percentage of noise pulses have amplitudes less than Et' The

variation in signal pulses received at the anode can be reduced by clipping

the pulse peaks with a suitable limiting amplifier, Clipping the signal

pulses also reduces the effects of drift in photomultiplier gain,

Brimhall and Page (1965). The signal output from the limiter amplifier

should appear as in Figure 16b. The desired voltage transfer characteristic

for amplification of the photomultiplier output is shown in Figure 17. The
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threshold function can be performed by a differential input amplifier
whose output is clamped to a fixed level (preferably zero) for all signal
inputs less than Et' For a satellite system the amplifier should be

an integrated circuit. Examples of suitable commercially available
integrated circuit RF amplifiers are the types CA3005 and CA3006 recently
announced by Radio Corporation of American (RCA Application Note
ICAN-5022 (1965). The CA3004 and CA3006 feature differential input,
frequency response from DC to 108 cycles per second, high gain, and sharp
limiting characteristics. Versatility in the operation of the CA3005 and
CA3006 is made possible by the availability of internal circuit points

to which external circuit elements may be connected to alter the basic
circuit confiéuration. To realize the voltage transfer characteristic

of Figure 17, no more than two stages of the CA3005 or the CA3006 will

be required. The 16 millivolt photomultiplier anode pulses are sufficient
to drive the input stage.

Following the amplifier of Figure 14 is shown a low pass averaging
filter whose purpose is to integrate the limiter output for some fixed
period T. It is not necessary to have the averaging period T greater
than twice the time period that the star appears in the slit. Ninety-
eight percent of the signal occurs in this interval. The output signal
from the low pass averaging filter will appear as shown in Figure 1léc.
The finite time averaging process is described by e, = 1/3 it ein(t) dt.

The design problem is to realize a filter which approximates the time

averaging process